Skip to main content

Resistive Random Access Memory: Materials, Filament Mechanism, Performance Parameters and Application

  • Conference paper
  • First Online:
Flexible Electronics for Electric Vehicles

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 863))

  • 624 Accesses

Abstract

Till today, we are using conventional technologies for memory-related applications. However, as the size of the electronic devices are shrinking day by day, such conventional memory devices will not be compatible with emerging applications like artificial intelligence, cloud storage, data mining, Internet of Things, etc. After the coronavirus outburst, these technologies are more needed as now all work is online. Henceforth, high data storage and fast information processing is one of the vital requirements which is to be researched. So, the researchers are now approaching the new memory technologies such as resistive random access memory (RRAM) which is superior than conventional memory devices in terms of scalability, speed, power consumption, design structure and many more other advantages. With all the pros, RRAM also has some cons like higher level of variability and reliability issues. So, to discuss all these issues, we present the basics of RRAM, their advantages, applications and technological trends in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Philip Wong H-S et al (2012, June) Metal oxide RRAM. Proc IEEE 100(6):1951–970. https://doi.org/10.1109/JPROC.2012.2190369

  2. Gupta V, Kapur S, Saurabh S, Grover A, Resistive random access memory: a review of device challenges. IETE Tech Rev. https://doi.org/10.1080/02564602.2019.1629341

  3. Wang H, Yan X (2019) Overview of resistive random access memory (RRAM): materials, filament mechanisms, performance optimization, and prospects. Phys Status Solidi RRL 1900073. https://doi.org/10.1002/pssr.201900073

  4. Shen Z et al (2020) Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 10:1437. https://doi.org/10.3390/nano10081437

  5. Zahoor et al (2020) Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res Lett 15(90). https://doi.org/10.1186/s11671-020-03299-9

  6. International Roadmap for Devices and Systems (2020) “Beyond CMOS

    Google Scholar 

  7. Akinaga H, Shima H (2010) Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE 98:2237e51. https://doi.org/10.1109/JPROC.2010.2070830

  8. Han ST, Zhou Y, Roy VAL (2013) Towards the development of flexible non‐volatile memories. Adv Mater 25:5425e49. https://doi.org/10.1002/adma.201301361

  9. Cagli C et al (2017, April) About the intrinsic resistance variability in HfO2-based RRAM devices. In: 2017 Joint international EUROSOI workshop and international conference on ultimate integration on silicon (EUROSOI-ULIS), Athens, April 2017, pp 31–4. https://doi.org/10.1109/ULIS.2017.7962593

  10. Chen S, Lou Z, Chen D, Shen G (2018) An artificial flexible visual memory system based on an UV‐motivated memristor. Adv Mater 30:1705400. https://doi.org/10.1002/adma.201705400

  11. Chen A (2016) A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron 125:25–38. https://doi.org/10.1016/j.sse.2016.07.006

  12. Cai Y, Tan J, YeFan L, Lin M, Huang R (2016) A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 27(27):275206. https://doi.org/10.1088/0957-4484/27/27/275206

  13. Chen YC, Yu HC, Huang CY, Chung WL, Wu SL, Su YK (2015) Nonvolatile bio-memristor fabricated with egg albumen film. Sci Rep 5:10022. https://doi.org/10.1038/srep10022

  14. Jin Z, Liu G, Wang J, Jin Z, Liu G, Wang J (2013) Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle. AIP Adv 3(5):052113. https://doi.org/10.1063/1.4804948

  15. Liu G, Chen Y, Gao S, Zhang B, Li R-W, Zhuang X (2018) Recent advances in resistive switching materials and devices: from memories to memristors. Eng Sci 4. https://doi.org/10.30919/es8d779

  16. Hickmott TW (1962) Low frequency negative resistance in thin anodic oxide films. J Appl Phys 33(9):2669–2682. https://doi.org/10.1063/1.1702530

    Article  Google Scholar 

  17. Baek IG et al (2004) Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: IEDM technical digest. IEEE international electron devices meeting, San Francisco, CA, 2004, pp 587–90. https://doi.org/10.1109/IEDM.2004.1419228

  18. Siddiqui GU, Rehman MM, Yang YJ, Choi KH (2017) A two-dimensional hexagonal boron nitride/polymer nanocomposite for flexible resistive switching devices. J Mater Chem C 5:862. https://doi.org/10.1039/c6tc04345c

  19. Jang J, Pan F, Braam K, Subramanian V (2012) Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications. Adv Mater 24:3573. https://doi.org/10.1002/adma.201200671

    Article  Google Scholar 

  20. Wei Z et al (2008) Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. In: 2008 IEEE international electron devices meeting, 2008, pp 1–4. https://doi.org/10.1109/IEDM.2008.4796676

  21. Varun I, Bharti D, Raghuwanshi V, Tiwari SP (2017, October) Multi-temperature deposition scheme for improved resistive switching behavior of Ti/AlOx/Ti MIM structure. Solid State Ionics 309:86–91. https://doi.org/10.1016/j.ssi.2017.07.013

  22. Yang L et al (2009) The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy. Appl Phys Lett 95(1). https://doi.org/10.1063/1.3167810

  23. Wu Q et al (2018) Improvement of durability and switching speed by incorporating nanocrystals in the HfOx based resistive random access memory devices. Appl Phys Lett 113:023105. https://doi.org/10.1063/1.5030780

    Article  Google Scholar 

  24. Lin C-C, Lin C-Y, Lin M-H, Lin C-H, Tseng T-Y (2007) Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films. IEEE Trans Electron Devices 54:3146–51. https://doi.org/10.1109/TED.2007.908867

  25. Kuang Y, Huang R, Tang Y, Ding W, Zhang L, Wang Y (2010) Flexible single-component-polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications. IEEE Electron Device Lett 31(7):758–60. https://doi.org/10.1109/LED.2010.2048297

  26. Xu X-Y, Yin Z-Y, Xu C-X, Dai J, Hu J-G (2014) Resistive switching memories in MoS2 nanosphere assemblies. Appl Phys Lett 104(3): 033504. https://doi.org/10.1063/1.4862755

  27. Menzel S, von Witzleben M, Havel V, Böttger U (2019) The ultimate switching speed limit of redox-based resistive switching devices. Faraday Discuss 213:197–213. https://doi.org/10.1039/C8FD00117K

    Article  Google Scholar 

  28. Ting YH, Chen JY, Huang CW, Huang TK, Hsieh CY, Wu WW (2018) Observation of resistive switching behavior in crossbar core-shell Ni/NiO nanowires memristor. Small 14:1703153. https://doi.org/10.1002/smll.201703153

    Article  Google Scholar 

  29. Chand U et al (2014) Mechanism of high temperature retention property (up to 200 °C) in ZrO2-based memory device with inserting a ZnO thin layer. IEEE Electron Device Lett 35(10). https://doi.org/10.1109/LED.2014.2345782

  30. Chen Z et al (2019) Ultrafast multilevel switching in Au/YIG/nSi RRAM. Adv Electron Mater 5(2):1800418. https://doi.org/10.1002/aelm.v5.2

  31. Lanza M et al (2019) Recommended methods to study resistive switching devices. Adv Electron Mater 5(1):1800143. https://doi.org/10.1002/aelm.v5.1

  32. Maestro-Izquierdo M et al, Unipolar resistive switching behavior in Al2O3/HfO2 multilayer dielectric stacks: fabrication, characterization and simulation. Nanotechnology 31(13):1–35. https://doi.org/10.1088/1361-6528/ab5f9a

  33. Lata LK et al (2020) Resistive switching characteristics of HfO2 based bipolar nonvolatile RRAM cell. Mat Today Proc 30. https://doi.org/10.1016/j.matpr.2020.06.209

  34. Govoreanu B et al (2011, December) 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. In: 2011 International electron devices meeting, Dec 2011, pp 31.6.1 4. https://doi.org/10.1109/IEDM.2011.6131652

  35. Li H et al (2015) A learnable parallel processing architecture towards unity of memory and computing. Sci Rep 5:13330. https://doi.org/10.1038/srep13330

  36. Chen Z et al, Optimized learning scheme for grayscale image recognition in a RRAM based analog neuromorphic system. In: IEEE international electron devices meeting (IEDM). IEEE, New York, pp 17–7. https://doi.org/10.1109/IEDM.2015.7409722

  37. Chen A, Comprehensive assessment of RRAM-based PUF for hardware security applications. In: IEEE international electron devices meeting (IEDM). IEEE, New York. https://doi.org/10.1109/iedm.2015.7409672

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Kumawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, N., Kumawat, R., Sharma, S.K. (2023). Resistive Random Access Memory: Materials, Filament Mechanism, Performance Parameters and Application. In: Dwivedi, S., Singh, S., Tiwari, M., Shrivastava, A. (eds) Flexible Electronics for Electric Vehicles. Lecture Notes in Electrical Engineering, vol 863. Springer, Singapore. https://doi.org/10.1007/978-981-19-0588-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0588-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0587-2

  • Online ISBN: 978-981-19-0588-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics