Skip to main content

Lung Cancer Detection by Classifying CT Scan Images Using Grey Level Co-occurrence Matrix (GLCM) and K-Nearest Neighbours

  • Conference paper
  • First Online:
Innovations in Computational Intelligence and Computer Vision

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1424))

Abstract

Lung cancer is the unbridled growth of abnormal cells in the lungs; as the growth of these abnormal cells continues, tumours are formed which obstructs with the natural functioning of the lung. Early cancer diagnoses, combined with treatment and proper medical care, enhances survival and cure rates. This study of lung cancer detection has divided into four stages: a pre-processing stage, image enhancement stage, feature extraction stage, and cancer classification stage. The system thoroughly focuses on detecting lung cancer disease with various image processing and machine learning techniques. The system accepts input in the form of an image called a computerized tomography (CT) scan, which is a medical screening technique used to study and detect lung cancer. This study aims to classify lung cancer into benign and malignant lung cancer using CT scan images. The testing of this system on the given dataset has shown a classification accuracy of 92.37% for determining benign or malignant cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Healthworld—Economic Times. https://health.economictimes.indiatimes.com/news/diagnostics/india-to-have-13-9-lakh-cancer-cases-by-year-end-15-7-lakh-by-2025-icmr/78572244, Date of visit: 02/09/2020

  2. Lung Cancer: Prevalent Trends and Emerging Concepts. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405940/, Date of visit: 02/09/2020

  3. National Foundation for Cancer Research. https://www.nfcr.org/cancer-types/lung-cancer/. Date of visit: 04/08/2020

  4. Firdaus, Q., Sigit, R., Harsonoand, T., Anwar, A.: Lung cancer detection based OnCTScan ımages with detection features using gray level co-occurrence matrix (GLCM) and support vector machine (SVM) methods. 2020 International Electronics Symposium (IES), Surabaya, Indonesia, 2020, pp. 643–648. https://doi.org/10.1109/IES50839.2020.9231663

  5. Firdaus Abdullah, M., Noraini Sulaiman, S., Khusairi Osman, M., Karim, N.K.A., Lutfi Shuaib, I., Danial Irfan Alhamdu, M.: Classification of lung cancer stages from CT scan ımages using ımage processing and k-nearest neighbours. 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 2020, pp. 68–72. https://doi.org/10.1109/ICSGRC49013.2020.9232492

  6. Jena, S.R., George, T., Ponraj, N.: Texture analysis based feature extraction and classification of lung cancer. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 2019, pp. 1–5. https://doi.org/10.1109/ICECCT.2019.8869369

  7. AyshathThabsheera, A.P., Thasleema, T.M., Rajesh, R.: Lung cancer detection using CT scan ımages: a review on various ımage processing techniques. In: Nagabhushan, P., Guru, D., Shekar, B., Kumar, Y. (eds.) Data Analytics and Learning. LectureNotes in Networks and Systems, vol. 43. Springer, Singapore (2019). https://doi.org/10.1007/978981-13-2514-4_34

  8. Adi, Kusworo & Widodo, Catur & Widodo, Aris & Gernowo, Rahmat & Pamungkas, Adi & Syifa, Rizky.: Detection lung cancer using gray level co-occurrence matrix (GLCM) and back propagation neural network classification. J. Eng. Sci. Technol. Rev. 11. 8–12 (2018). https://doi.org/10.25103/jestr.112.02

  9. Avinash, S., Manjunath, K., Kumar, S.S.: An improved image processing analysis for the detection of lung cancer using Gabor filters and watershed segmentation technique. In: 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2016, pp. 1–6. https://doi.org/10.1109/INVENTIVE.2016.7830084

  10. Khin, M., Mya, T., Aung Soe, K.: Feature extraction and classification of lung cancer nodule using ımage processing techniques. Int. J. Eng. Res. Technol. (IJERT) 3(3) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aayush Kamdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamdar, A., Sharma, V., Sonawane, S., Patil, N. (2022). Lung Cancer Detection by Classifying CT Scan Images Using Grey Level Co-occurrence Matrix (GLCM) and K-Nearest Neighbours. In: Roy, S., Sinwar, D., Perumal, T., Slowik, A., Tavares, J.M.R.S. (eds) Innovations in Computational Intelligence and Computer Vision . Advances in Intelligent Systems and Computing, vol 1424. Springer, Singapore. https://doi.org/10.1007/978-981-19-0475-2_27

Download citation

Publish with us

Policies and ethics