Skip to main content

Cochlear Implants in Clinical Use Worldwide Today

  • Chapter
  • First Online:
Cochlear Implants

Abstract

The various cochlear implants from different manufacturers available today are elaborated. The implants themselves, the speech processors, the electrodes, and the speech processing strategies of each device are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arndt P, Staller S, Arcaroli J, Hines A, Ebinger K, Cochlear Ltd. Within – subject comparison of advanced coding strategies in the Nucleus 24 cochlear implant. 1999.

    Google Scholar 

  2. Wolfe J, Neumann S, Marsh M, Schafer E, Lianos L, Gilden J, O’Neill L, Arkis P, Menapace C, Nel E, Jones M. Benefits of adaptive signal processing in a commercially available cochlear implant sound processor. Otol Neurotol. 2015;00:00.

    Google Scholar 

  3. Patrick JF, Busby PA, Gibson PJ. The development of the Nucleus® Freedom™ cochlear implant system. Trends Amplification. 2006;10(4):175–200.

    Article  Google Scholar 

  4. Data on file at Oticon Medical-Mechanical Overall Feature Doc-00060923.

    Google Scholar 

  5. Vanlommel M, Lipski S, Dolhen P. Minimally invasive pocket technique for the implantation of Neurelec Digisonic SP cochlear implant. Eur Arch Otorhinolaryngol. 2014;271:913–8.

    Article  Google Scholar 

  6. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.

    Article  CAS  Google Scholar 

  7. Miller CA, Abbas PJ, Rubinstein JT, Robinson BK, Matsuoka AJ, Woodworth G. Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation. Hear Res. 1998;119:142–54.

    Article  CAS  Google Scholar 

  8. Macherey O, Carlyon RP, van Wieringen A, Deeks JM, Wouters J. Higher sensitivity of human auditory nerve fibers to positive electrical currents. J Assoc Res Otolaryngol. 2008;9(2):241–51.

    Article  Google Scholar 

  9. Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng. 1977;24(1):59–63.

    Article  CAS  Google Scholar 

  10. Data on file Oticon Medical, DOC-TX15_MT_0111.

    Google Scholar 

  11. Data on file at Oticon Medical (Test report TX15_RES_0046).

    Google Scholar 

  12. Segovia-Martinez M, Gnansia D, Hoen M. Coordinated adaptive processing in the neuro cochlear implant system. Oticon Medical White Paper. 2016;M80293

    Google Scholar 

  13. Langner F, Gnansia D, Hoen M, Büchner A, Nogueira W. Effect of dynamic range in different stages of signal processing in Cochlear Implant listeners on speech. ENT World Congress, IFOS 2017, June 24–28, Paris, France. 2017.

    Google Scholar 

  14. Monocentric data collection performed at the MHH Hannover Medical School in Germany in 2016 by A. Buchner et al. (183351).

    Google Scholar 

  15. Adenis V, Gourévitch B, Mamelle E, Recugnat M, Stahl P, Gnansia D, Nguyen Y, Edeline JM. ECAP growth function to increasing pulse amplitude or pulse duration demonstrates large inter-animal variability that is reflected in auditory cortex of the guinea pig. PLoS One. 2018;13(8):e0201771. https://doi.org/10.1371/journal.pone.0201771. eCollection 2018.

  16. Segovia-Martinez M, Gnansia D. Design and effects of post-spectral output compression in cochlear implant coding strategy. Oticon Medical White paper. 2013.

    Google Scholar 

Further Reading

  • Chambers S, Newbold C, Stathopoulos D, Needham K. Protecting against electrode insertion trauma using dexamethasone. Cochlear Implants Int. 2018;1–11 https://doi.org/10.1080/14670100.2018.1509531.

  • Ching TY, Incerti P, Plant K. Electric-acoustic stimulation: for whom, in which ear, and how. Cochlear Implants Int. 2015;16(Suppl 1):S12–5.

    Article  Google Scholar 

  • Dalbert A, Huber A, Baumann N, Veraguth D, Roosli C, Pfiffner F. Hearing preservation after cochlear implantation may improve long-term word perception in the electric-only condition. Otol Neurotol. 2016;37(9):1314–9.

    Article  Google Scholar 

  • Dazert S, Thomas JP, Büchner A, Müller J, Hempel JM, Löwenheim H, Mlynski R. Off the ear with no loss in speech understanding: comparing the RONDO and the OPUS 2 cochlear implant audio processors. Eur Arch Otorhinolaryngol. 2017;274(3):1391–5. https://doi.org/10.1007/s00405-016-4400-z. Epub 2016 Dec 1

    Article  PubMed  Google Scholar 

  • Dhanasingh A, Jolly C. An overview of cochlear implant electrode array designs. Hear Res. 2017;356:93–103. https://doi.org/10.1016/j.heares.2017.10.005. Epub 2017 Oct 18.

  • Dhondt CMC, Swinnen FKR, Dhooge IJM. Bilateral cochlear implantation or bimodal listening in the paediatric population: retrospective analysis of decisive criteria. Int J Pediatr Otorhinolaryngol. 2018;104:170–7. https://doi.org/10.1016/j.ijporl.2017.10.043.

    Article  PubMed  Google Scholar 

  • Dunn CC, Etler C, Hansen M, Gantz BJ. Successful hearing preservation after reimplantation of a failed hybrid cochlear implant. Otol Neurotol. 2015;36(10):1628–32.

    Article  Google Scholar 

  • Gfeller KE, Olszewski C, Turner C, Gantz B, Oleson J. Music perception with cochlear implants and residual hearing. Audiol Neuro-otol. 2006;11(Suppl 1):12–5.

    Article  Google Scholar 

  • Gifford RH, Revit LJ. Speech perception for cochlear implant recipients in a realistic background noise: effectiveness of preprocessing strategies and external options for improving sentence recognition in noise. J Am Acad Audiol. 2010;21:441–51.

    Article  Google Scholar 

  • Gifford RH, Dorman MF, Skarzynski H, Lorens A, Polak M, Driscoll CL, Roland P, Buchman CA. Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear. 2013;34(4):413–25.

    Article  Google Scholar 

  • Hochmair I, Nopp P, Jolly C, et al. MED-EL Cochlear implants: state of the art and a glimpse into the future. Trends Amplif. 2006;10(4):201–19. https://doi.org/10.1177/1084713806296720.

    Article  PubMed  PubMed Central  Google Scholar 

  • https://s3.medel.com/pdf/21617.pdf

  • https://blog.medel.pro/sonnet-2-audio-processor/

  • https://blog.medel.pro/mri-cochlear-implants-reliability/

  • https://www.medel.com/hearing-solutions/cochlear-implants/mri-and-cochlear-implants

  • Jeong SW, Kang MY, Kim LS. Criteria for selecting an optimal device for the contralateral ear of children with a unilateral cochlear implant. Audiol Neurootol. 2015;20(5):314–21.

    Article  Google Scholar 

  • Kisser U, Wünsch J, Hempel JM, Adderson-Kisser C, Stelter K, Krause E, Müller J, Schrötzlmair F. Residual hearing outcomes after cochlear implant surgery using ultra-flexible 28-mm electrodes. Otol Neurotol. 2016;37(7):878–81.

    Article  Google Scholar 

  • Mady LJ, Sukato DC, Fruit J, et al. Hearing preservation: does electrode choice matter? Otolaryngol Head Neck Surg. 2017;194599817707167

    Google Scholar 

  • Nguyen S, Cloutier F, Philippon D, Côté M, Bussières R, Backous DD. Outcomes review of modern hearing preservation technique in cochlear implant. Auris Nasus Larynx. 2016;43(5):485–8.

    Article  Google Scholar 

  • Parkinson AJ, Rubinstein JT, Drennan WR, Dodson C, Nie K. Hybrid music perception outcomes: implications for melody and timbre recognition in cochlear implant recipients. Otol Neurotol. 2019;40(3):e283–9. https://doi.org/10.1097/MAO.0000000000002126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos Macias A, Perez Zaballos MT, Ramos de Miguel A, et al. Importance of perimodiolar electrode position for psychoacoustic discrimination in cochlear implantation. Otol Neurotol. 2017;38(10):e429–37. https://doi.org/10.1097/MAO.0000000000001594.

    Article  PubMed  Google Scholar 

  • Scheper V, Hessler R, Hütten M, et al. Local inner ear application of dexamethasone in cochlear implant models is safe for auditory neurons and increases the neuroprotective effect of chronic electrical stimulation. PLoS One. 2017;12(8):e0183820. https://doi.org/10.1371/journal.pone.0183820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snels C, IntHout J, Mylanus E, Huinck W, Dhooge I. Hearing preservation in cochlear implant surgery: a meta-analysis. Otol Neurotol. 2019;40(2):145–53. https://doi.org/10.1097/MAO.0000000000002083.

    Article  PubMed  Google Scholar 

  • Távora-Vieira D, Miller S. The benefits of using RONDO and an in-the-ear hearing aid in patients using a combined electric-acoustic system. Adv Otolaryngol. 2015;2015, Article ID 941230, 4 pp. https://doi.org/10.1155/2015/941230

  • Wolfe J, Neumann S, Marsh M, et al. Benefits of adaptive signal processing in a commercially available cochlear implant sound processor. Otol Neurotol. 2015;00:00–00.

    Google Scholar 

  • Wolfe J, Morais M, Neumann S, et al. Evaluation of speech recognition with personal FM and classroom audio distribution systems. J Educ Audiol. 2013;19:65–79.

    Google Scholar 

  • Young NM, Hoff SR, Ryan M. Impact of cochlear implant with diametric magnet on imaging access, safety, and clinical care. Laryngoscope. 2020. https://doi.org/10.1002/lary.28854. Epub ahead of print.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

5.1 Electronic Supplementary Material

Working of a Cochlear implant (MP4 7833 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeSaSouza, S. (2022). Cochlear Implants in Clinical Use Worldwide Today. In: DeSaSouza, S. (eds) Cochlear Implants. Springer, Singapore. https://doi.org/10.1007/978-981-19-0452-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0452-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0451-6

  • Online ISBN: 978-981-19-0452-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics