Skip to main content

Functional Aspects of Fish Mucosal Lectins and Crustaceans with Its Applications

  • Chapter
  • First Online:
Aquatic Lectins

Abstract

Fish skin mucus is an important part of the innate immune system that acts as a first line of defence against infections. Because of the presence of gel-forming macromolecules and hyaluronic acid, mucus has a slippery texture. Lectins, which are a key component of mucus, are carbohydrate-binding proteins that are neither antibodies nor enzymes, thus far taking part in vital roles in both innate and adaptive immunity. Fish mucus lectins are categorized into four types and mucus lectins have recently been studied for their structural variety and involvement in innate immunity. The identification, types and applications of fish mucus lectins are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AJL:

Anguilla japonica lectin

AMP:

Antimicrobial peptides

conCL:

Congerin lectin

CRD:

Carbohydrate recognition domain

CsLTL:

Chana striata lily-type lectin

FAO:

Food and Agriculture Organization

FBL:

Fucose-binding lectin

FHL:

Flat head lectin

FTLD:

Fucose recognition domain

GBL:

Galactose-binding lectin

kDa:

Kilodalton

LBL:

Lactose-binding lectin

MAAs:

Mycosporine-like amino acids

Nlp:

Natterin-like protein

NOAA:

National Oceanic and Atmospheric Administration

PFL:

Puffer fish lectin

PRRs:

Pattern recognition receptors

RbFTL:

Rock bream F-type lectin

RBL:

Rhamnose-binding lectin

References

  • Al Hassen JM, Thomson M, Summers B (1986) Purification and properties of a hemagglutination factor from Arabian Gulf catfish (Arius thalassinus) epidermal secretion. Comp Biochem Physiol B 85:31–39

    Article  Google Scholar 

  • Arasu A, Kumaresan V, Sathyamoorthi A et al (2013) Fish lily type lectin-1 contains-prism architecture: immunological characterization. Mol Immunol 56:497–506

    Article  CAS  PubMed  Google Scholar 

  • Ballarin L, Cammarata M, Franchi N et al (2013) Routes in innate immunity evolution: galectins and rhamnose-binding lectins in ascidians. In: Kim S-K (ed) Marine proteins and peptides: biological activities and applications, 1st edn. Wiley, Hoboken, NJ, pp 185–205

    Chapter  Google Scholar 

  • Bianchet MA, Odom EW, Vasta GR (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 9:628–634

    CAS  PubMed  Google Scholar 

  • Bordas MA, Balebona MC, Rodriguez-Maroto JM et al (1998) Chemotaxis of pathogenic vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.). Appl Environ Microbiol 64:1573–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinchmann MF (2006) Immune relevant molecules identified in the skin mucus of fish using-omics technologies. Mol Biosyst 12:2056–2063

    Article  CAS  Google Scholar 

  • Brinchmann MF, Patel DM, Pinto N (2018) Functional aspects of fish mucosal lectins—interaction with non-self. Molecules 23:1119

    Article  PubMed Central  CAS  Google Scholar 

  • Cho SY, Kwon J, Vaidya B et al (2014) Modulation of proteome expression by F-type lectin during viral hemorrhagic septicemia virus infection in fathead minnow cells. Fish Shellfish Immunol 39:464–474

    Article  CAS  PubMed  Google Scholar 

  • Chua CE, Lim YS, Lee MG (2012) Non-classical membrane trafficking processes galore. J Cell Physiol 227:3722–3730

    Article  CAS  PubMed  Google Scholar 

  • Cordero H, Brinchmann MF, Cuesta A (2015) Skin mucus proteome map of European sea bass (Dicentrarchus labrax). Proteomics 15:4007–4020

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Das SK, Samal J (2018) Epidermal mucus, a major determinant in fish health: a review. Iran J Vet Res 19:72–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eddie Ip WK, Takahashi K, Ezekowitz RA (2009) Mannose-binding lectin and innate immunity. Immunol Rev 230:9–21

    Article  CAS  Google Scholar 

  • Esteban MA (2012) An overview of the immunological defenses in fish skin. In: International scholarly research notices, pp 1–29

    Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, Rome, p 200

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2010) Aquaculture planning. Policy formulation and implementation of sustainable development. In: FAO Fisheries and Aquaculture Technical Paper 542, Rome, Italy

    Google Scholar 

  • Goldstein IJ, Hudges RC, Monsigny M et al (1980) What should be called lectin? Nature 285:66

    Article  Google Scholar 

  • Goto-Nance R, Watanabe Y, Kamiya H (1995) Characterization of lectins from the skin mucus of the Lonach Misgurnus anguillicaudatus. Fish Sci 61:137–140

    Article  CAS  Google Scholar 

  • Gupta GS (2012) Lectins: an overview. In: Animal lectins: form, function and clinical applications. Springer, Vienna

    Chapter  Google Scholar 

  • Halberg LM, Laurits LJ, Elmerdahl OJ (2001) Chemotaxis of vibrio anguillarum to fish mucus: role of the origin of the fish mucus, the fish species and the serogroup of the pathogen. FEMS Microbiol Ecol 38:77–80

    Article  Google Scholar 

  • Kamiya H, Muramoto K, Goto R (1988) Purification and properties of agglutinins from conger eel, Conger myriaster (Brevoort), skin mucus. Dev Comp Immunol 12:309–318

    Article  CAS  PubMed  Google Scholar 

  • Kleshchenko YY, Moody TN, Furtak VA et al (2004) Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infect Immun 72:6717–6721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klesius PH, Pridgeon JW, Aksoy M (2010) Chemotactic factors of Flavobacterium columnare to skin mucus of healthy channel catfish (Ictalurus punctatus). FEMS Microbiol Lett 310:145–151

    Article  CAS  PubMed  Google Scholar 

  • Kugapreethan R, Wan Q, Nilojan J (2018) Identification and characterization of a calcium-dependent lily-type lectin from black rockfish (Sebastes schlegelii): molecular antennas are involved in host defense via pathogen recognition. Dev Comp Immunol 81:54–62

    Article  CAS  PubMed  Google Scholar 

  • Levroney EL, Aguilar HC, Fulcher JA et al (2005) Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol 175:413–420

    Article  CAS  PubMed  Google Scholar 

  • Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151

    Article  PubMed  CAS  Google Scholar 

  • Magnadóttir B (2010) Immunological control of fish diseases. J Mar Biotechnol 12:361–379

    Article  CAS  Google Scholar 

  • Magnadóttir B, Jónsdóttir H, Helgason S, Björnsson B et al (2001) Immune parameters of immunized cod (Gadus morhua L). Fish Shellfish Immunol 10:75–89

    Article  CAS  Google Scholar 

  • Marques MRF, Barracco MA (2000) Lectins, as non-self-recognition factors, in crustaceans. Aquaculture 191:23–44

    Article  CAS  Google Scholar 

  • Matsushita M, Matsushita A, Endo Y et al (2004) Origin of the classical complement pathway: lamprey orthologue of mammalian C1q acts as a lectin. Proc Natl Acad Sci U S A 101:10127–10131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeilly TN, Naylor SW, Mahajan A et al (2008) Escherichia coli O157: H7 colonization in cattle following systemic and mucosal immunization with purified H7 flagellin. Infect Immun 76:2594–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramoto K, Kamiya H (1992) The amino-acid-sequence of a lectin from conger eel, Conger myriaster, skin mucus. Biochim Biophys Acta 1116:129–136

    Article  CAS  PubMed  Google Scholar 

  • Muramoto K, Kagawa D, Sato T et al (1999) Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster. Comp Biochem Physiol B Biochem Mol Biol 123:33–45

    Article  CAS  PubMed  Google Scholar 

  • Nakamura O, Watanabe T, Kamiya H (2001) Galectin containing cells in the skin and mucosal tissues in Japanese conger eel, Conger myriaster: an immunohistochemical study. Dev Comp Immunol 25:431–437

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Ichida S, Mimura T et al (1984) Purification and characterization of a fish lectin from the external mucus of ophidiidae, Genypterus blacodes. J Pharmacobiodyn 7:614–623

    Article  CAS  PubMed  Google Scholar 

  • Odekanyin OO, Ku KU A (2014) Characterization of galactose-specific lectin from the skin mucus of African catfish Clarias gariepinus a burchell, 1822. Sci Res Essays 9:869–879

    Google Scholar 

  • Ogawa T, Watanabe M, Naganuma T (2011) Diversified carbohydrate-binding lectins from marine resources. J Amino Acids 2011:838914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto M, Tsutsui S, Tasumi S et al (2005) Tandem repeat L-rhamnose-binding lectin from the skin mucus of ponyfish, Leiognathus nuchalis. Biochem Biophys Res Commun 333:463–469

    Article  CAS  PubMed  Google Scholar 

  • Palaksha KJ, Shin GW, Kim YR et al (2008) Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 24:479–488

    Article  CAS  PubMed  Google Scholar 

  • Purcell JE, Anderson PAV (1995) Electrical responses to water-soluble components of fish mucus recorded from the cnidocytes of a fish predator, Physalia physalis Mar. Freshw Behav Physiol 26:149–162

    Article  Google Scholar 

  • Raj VS, Fournier G, Rakus K et al (2011) Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Vet Res 42:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan B, Fernandes JM, Caipang CM et al (2011) Proteome reference map of the skin mucus of Atlantic cod (Gadus morhua) revealing immune competent molecules. Fish Shellfish Immunol 31(2):224–231

    Article  CAS  PubMed  Google Scholar 

  • Rajan B, Patel DM, Kitani Y et al (2017) Novel mannose binding natterin-like protein in the skin mucus of Atlantic cod (Gadus morhua). Fish Shellfish Immunol 68:452–457

    Article  CAS  PubMed  Google Scholar 

  • Rombout JH, Van Der Tuin SJ, Yang G et al (2008) Expression of the polymeric immunoglobulin receptor (pIgR) in mucosal tissues of common carp (Cyprinus carpio L.). Fish Shellfish Immunol 24:620–628

    Article  CAS  PubMed  Google Scholar 

  • Salerno G, Parisi MG, Parrinello D (2009) F-type lectin from the sea bass (Dicentrarchus labrax): purification, cDNA cloning, tissue expression and localization, and opsonic activity. Fish Shellfish Immunol 27:143–153

    Article  CAS  PubMed  Google Scholar 

  • Schröder HC, Ushijima H (2003) Krasko et al., (2003) emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal metazoa. A tachylectin-related protein in the sponge Suberites domuncula. J Biol Chem 29(278):32810–32817

    Article  CAS  Google Scholar 

  • Secombes CJ, Wang T (2012) The innate and adaptive immune system of fish. In: Infectious disease in aquaculture. Woodhead Publishing, Cambridge, pp 3–68

    Chapter  Google Scholar 

  • Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fish 4:401–429

    Article  Google Scholar 

  • Shiomi K, Uematsu H, Yamanaka H (1989) Purification and characterization of a galactose-binding lectin from the skin mucus of the conger eel Conger myriaster. Comp Biochem Physiol B Comp Biochem 92:255–261

    Article  CAS  Google Scholar 

  • Shiomi K, Uematsu H, Ito H et al (1990) Purification and properties of a lectin in the skin mucus of the dragonet Repomucenus richardsonii. Nippon Suisan Gakkaishi 56:119–123

    Article  CAS  Google Scholar 

  • Shoemaker CA, Klesius PH, Xu D (2005) Overview of the immune system of fish. In: Aquatic American Conference New Orleans, LA, USA

    Google Scholar 

  • Soderhall K (2010) Invertebrate immunity. Adv Exp Med Biol 708:244

    Google Scholar 

  • Subramanian S, Mackinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B Biochem Mol Biol 148:256–263

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Araki M, Ishida M, Nagashima Y, Shiomi K (2005) Further isolation and characterization of grammistins from the skin secretion of the soap fish Grammistes sexlineatus. Toxicon 45:595–601

    Article  CAS  PubMed  Google Scholar 

  • Sun PP, Ren YY, Zheng J (2019) Purification and characterization of a new lectin from loach skin mucus. J Chem 2019:11

    Google Scholar 

  • Suzuki Y, Tasumi S, Tsutsui S et al (2003) Molecular diversity of skin mucus lectins in fish. Comp Biochem Physiol Part B Biochem Mol Biol 136:723–730

    Article  CAS  Google Scholar 

  • Swain P, Dash S, Sahoo PK (2007) Non-specific immune parameters of brood Indian major carp Labeo rohita and their seasonal variations. Fish Shellfish Immunol 22:38–43

    Article  CAS  PubMed  Google Scholar 

  • Tamura S, Yamakawa M, Shiomi K (2011) Purification, characterization and cDNA cloning of two natterin-like toxins from the skin secretion of oriental catfish Plotosus lineatus. Toxicon 58:430–438

    Article  CAS  PubMed  Google Scholar 

  • Tasumi S, Ohira T, Kawazoe I (2002) Primary structure and characteristics of a lectin from skin mucus of the Japanese eel Anguilla japonica. J Biol Chem 277:27305–27311

    Article  CAS  PubMed  Google Scholar 

  • Tasumi S, Yang WJ, Usami T et al (2004) Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel, Anguilla japonica. Dev Comp Immunol 28:325–335

    Article  CAS  PubMed  Google Scholar 

  • Thongda W, Li C, Luo Y et al (2014) L-Rhamnose-binding lectins (RBLs) in channel catfish, Ictalurus punctatus: characterization and expression profiling in mucosal tissues. Dev Comp Immunol 44:320–331

    Article  CAS  PubMed  Google Scholar 

  • Toda M, Goto-Nance R, Muramoto K et al (1996) Characterization of the lectin from the skin mucus of the kingklip Genypterus capensis. Fish Sci 62:138–141

    Article  CAS  Google Scholar 

  • Tsutsui S, Tasumi S, Suetake H (2003) Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. J Biol Chem 278:20882–20889

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Iwamoto K, Nakamura O (2007) Yeast-binding C-type lectin with opsonic activity from conger eel (Conger myriaster) skin mucus. Mol Immunol 44:691–702

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Yamaguchi M, Hirasawa A et al (2009) Common skate (Raja kenojei) secretes pentraxin into the cutaneous secretion: the first skin mucus lectin in cartilaginous fish. J Biochem 146:295–306

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Komatsu Y, Sugiura T et al (2011a) A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime. J Biochem 150:501–514

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Okamoto M, Ono M et al (2011b) A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallikrein. Glycobiology 2:1580–1587

    Article  CAS  Google Scholar 

  • Tsutsui S, Yoshinaga T, Komiya K et al (2016) Differential expression of skin mucus C-type lectin in two freshwater eel species, Anguilla marmorata and Anguilla japonica. Dev Comp Immunol 61:154–160

    Article  CAS  PubMed  Google Scholar 

  • Uribe C, Folch H, Enriquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56:486–503

    Article  CAS  Google Scholar 

  • Vasta GR, Amzel LM, Bianchet MA et al (2017) F-type lectins: a highly diversified family of fucose-binding proteins with a unique sequence motif and structural fold, involved in self/non-self-recognition. Front Immunol 29:1648

    Article  CAS  Google Scholar 

  • Watanabe Y, Shiina N, Shinozaki F et al (2008) Isolation and characterization of l-rhamnose-binding lectin, which binds to microsporidian Glugea plecoglossi, from ayu (Plecoglossus altivelis) eggs. Dev Comp Immunol l32:487–499

    Article  CAS  Google Scholar 

  • Zaccone G, Kapoor BG, Fasulo S (2001) Structural, histochemical and functional aspects of the epidermis of fishes. Adv Mar Biol 40:253–348

    Article  Google Scholar 

  • Zamzow JP (2007) Ultraviolet-absorbing compounds in the mucus of shallow-dwelling tropical reef fishes correlate with environmental water clarity. Mar Ecol Prog Ser 343:263–271

    Article  CAS  Google Scholar 

Download references

Acknowledgement

RI gratefully acknowledges the Science and Engineering Research Board, India, New Delhi, India for the financial assistance Rendered [Ref: PDF/2020/001027].

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishwarya, R., Rengarajan, J., Vaseeharan, B. (2022). Functional Aspects of Fish Mucosal Lectins and Crustaceans with Its Applications. In: Elumalai, P., Vaseeharan, B., Lakshmi, S. (eds) Aquatic Lectins. Springer, Singapore. https://doi.org/10.1007/978-981-19-0432-5_14

Download citation

Publish with us

Policies and ethics