Skip to main content

Aquatic Lectins: An Overview (A Paradigm)

  • Chapter
  • First Online:
Aquatic Lectins

Abstract

Lectins are glycoproteins that are capable of binding reversibly and specifically to sugar moieties, especially the carbohydrate content of glycoproteins and glycoconjugates. Lectin could be a membrane or soluble PRR that has a pivotal role in recognition and eradication of invading microorganisms. Lectins composed of many proteins that may particularly recognize and bind sugars such as lactose, mannose, galactose, N-acetyl galactosamine, and N-acetylglucosamine, resulting in non-covalent interactions. Lectin–carbohydrate interaction is a very important part of immunity which is not only accustomed to detect pathogens, but also employed in several alternative biological processes such as cell adhesion, agglutination, opsonization, complement activation, and phagocytosis. The lectins are classified in different ways. Based on their affinity towards the monosaccharides, lectins have been grouped into five such as Galactose Binding Lectins, Fucose binding lectins, Mannose-Binding Lectins, Sialic acid-binding lectins, and N-acetyl glucosamine binding lectins. On the basis of sources, they can be classified as plant derived lectins, invertebrate lectins and vertebrate lectins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRD:

Carbohydrate recognition domain

CTLs:

C-type lectins

MBL:

Mannose-binding lectin

PRR:

Pattern recognition receptor

SBL:

Sialic acid-binding lectin

References

  • Atta A, Barral-Netto M, Peixinho S, Sousa-Atta M (1989) Isolation and functional characterization of a mitogenic lectin from the marine sponge Cinachyrella alloclada. Braz J Med Biol Res 22:379–385

    CAS  PubMed  Google Scholar 

  • Atta A, Menezes EP, Peixinho S, Sousa-Atta ML (1990) Isolation of a lectin from the marine sponge Desmapsama anchorata by affinity chromatography on raffinose-sepharose 6B. Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol 36(4):447–457

    Google Scholar 

  • Barre A, Simplicien M, Benoist H, Van Damme EJM, RougĂ© P (2019) Mannose-specific lectins from marine algae: diverse structural scaffolds associated to common virucidal and anti-cancer properties. Mar Drugs 17:440. https://doi.org/10.3390/md17080440

    Article  CAS  PubMed Central  Google Scholar 

  • Bayer H, Ey N, Wattenberg A, Voss C, Berger MR (2012) Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr Purif 82:97

    Article  CAS  Google Scholar 

  • Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, Currens MJ, Cardellina JH, Buckheit RW, Nara PL, Pannell LK, Sowder RC, Henderson LE (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41:1521–1530. https://doi.org/10.1128/AAC.41.7.1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretting H, Kabat EA, Liao J, Pereira MEA (2002) Purification and characterization of the agglutinins from the sponge Aaptos papillata and a study of their combining sites [WWW document]. ACS Publ. https://doi.org/10.1021/bi00668a013

    Book  Google Scholar 

  • Buck F, Luth C, Strupat K, Bretting H (1992) Comparative investigations on the amino-acid sequences of different isolectins from the sponge Axinella polypoides (Schmidt). Biochim Biophys Acta Protein Struct Mol Enzymol 1159:1–8. https://doi.org/10.1016/0167-4838(92)90067-N

    Article  CAS  Google Scholar 

  • Carneiro RF, de Melo AA, de Almeida AS, da Moura R, Chaves RP, de Sousa BL, do Nascimento KS, Sampaio SS, Lima JPMS, Cavada BS, Nagano CS, Sampaio AH (2013a) H-3, a new lectin from the marine sponge Haliclona caerulea: purification and mass spectrometric characterization. Int J Biochem Cell Biol 45:2864–2873. https://doi.org/10.1016/j.biocel.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RF, de Melo AA, Nascimento FEP, Simplicio CA, Nascimento KS, Rocha BAM, Saker-Sampaio S, da Moura R, Mota SS, Cavada BS, Nagano CS, Sampaio AH (2013b) Halilectin 1 (H-1) and Halilectin 2 (H-2): two new lectins isolated from the marine sponge Haliclona caerulea. J Mol Recognit 26:51–58. https://doi.org/10.1002/jmr.2243

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RF, de Lima PHP, Chaves RP, Pereira R, Pereira AL, de Vasconcelos MA, Pinheiro U, Teixeira EH, Nagano CS, Sampaio AH (2017) Isolation, biochemical characterization and antibiofilm effect of a lectin from the marine sponge Aplysina lactuca. Int J Biol Macromol 99:213–222. https://doi.org/10.1016/j.ijbiomac.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RF, Viana JT, Torres RCF, da Silva LT, Andrade AL, de Vasconcelos MA, Pinheiro U, Teixeira EH, Nagano CS, Sampaio AH (2019) A new mucin-binding lectin from the marine sponge Aplysina fulva (AFL) exhibits antibiofilm effects. Arch Biochem Biophys 662:169–176. https://doi.org/10.1016/j.abb.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  • CĂłrdoba-Aguilar E, Coutiño-RodrĂ­guez R, Giles-RĂ­os H, Hernández-Cruz PA, RĂ­os-CortĂ©s P, Montero H (2018) Lectins from Eichornia crassipens and Lemna minor may be involved in Vibrio cholerae El tor adhesion. Epidemiol Mikrobiol Imunol Cas Spolecnosti Epidemiol Mikrobiol Ceske Lek Spolecnosti JE Purkyne 67:24–30

    Google Scholar 

  • do Nascimento-Neto LG, Cabral MG, Carneiro RF, Silva Z, Arruda FVS, Nagano CS, Fernandes AR, Sampaio AH, Teixeira EH, Videira PA (2018) Halilectin-3, a lectin from the marine sponge Haliclona caerulea, induces apoptosis and autophagy in human breast cancer MCF7 cells through Caspase-9 pathway and LC3-II protein expression. Anticancer Agents Med Chem 18:521–528. https://doi.org/10.2174/1871520617666171114094847

    Article  CAS  PubMed  Google Scholar 

  • Dogović N, Sladić D, Kljajić Z, Poznanović S, Gašić MJ (1996) Isolation and partial characterization of a lectin from the marine sponge Crambe crambe. J Serb Chem Soc 61:83–88

    Google Scholar 

  • Dong CH, Yang ST, Yang ZA, Zhang L, Gui JF (2004) A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Dev Biol 265:341e354

    Article  Google Scholar 

  • Dresch RR, Zanetti GD, Lerner CB, Mothes B, Trindade VMT, Henriques AT, Vozári-Hampe MM (2008) ACL-I, a lectin from the marine sponge Axinella corrugata: isolation, characterization and chemotactic activity. Comp Biochem Physiol Toxicol Pharmacol 148:23–30. https://doi.org/10.1016/j.cbpc.2008.03.003

    Article  CAS  Google Scholar 

  • Dresch RR, Lerner CB, Mothes B, Trindade VMT, Henriques AT, Vozári-Hampe MM (2012) Biological activities of ACL-I and physicochemical properties of ACL-II, lectins isolated from the marine sponge Axinella corrugata. Comp Biochem Physiol B Biochem Mol Biol 161:365–370. https://doi.org/10.1016/j.cbpb.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  • Elumalai P, Rubeena AS, Arockiaraj J, Wongpanya R, Cammarata M, Ringø E, Vaseeharan B (2019) The role of lectins in finfish: a review. Rev Fish Sci Aquac 27:152–169. https://doi.org/10.1080/23308249.2018.1520191

    Article  Google Scholar 

  • Engel M, Bachmann M, Schröder HC, Rinkevich B, Kljajic Z, Uhlenbruck G, MĂĽller WE (1992) A novel galactose- and arabinose-specific lectin from the sponge Pellina semitubulosa: isolation, characterization and immunobiological properties. Biochimie 74:527–537. https://doi.org/10.1016/0300-9084(92)90150-d

    Article  CAS  PubMed  Google Scholar 

  • Ewart KV, Johnson SC, Ross NW (2001) Lectins of the innate immune system and their relevance to fish health. ICES J Mar Sci 58:380–385. https://doi.org/10.1006/jmsc.2000.1020

    Article  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005) Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Zoolog Sci 22:1113–1122. https://doi.org/10.2108/zsj.22.1113

    Article  CAS  PubMed  Google Scholar 

  • Gardères J, Bourguet-Kondracki M-L, Hamer B, Batel R, Schröder HC, MĂĽller WEG (2015) Porifera lectins: diversity, physiological roles and biotechnological potential. Mar Drugs 13:5059–5101. https://doi.org/10.3390/md13085059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardères J, Domart-Coulon I, Marie A, Hamer B, Batel R, MĂĽller WEG, Bourguet-Kondracki M-L (2016) Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus. Comp Biochem Physiol B Biochem Mol Biol 200:17–27. https://doi.org/10.1016/j.cbpb.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  • Gundacker D, Leys SP, Schröder HC, MĂĽller IM, MĂĽller WE (2001) Isolation and cloning of a C-type lectin from the hexactinellid sponge Aphrocallistes vastus: a putative aggregation factor. Glycobiology 11:21–29. https://doi.org/10.1093/glycob/11.1.21

    Article  CAS  PubMed  Google Scholar 

  • Hasan I, Ozeki Y (2019) Histochemical localization of N-acetylhexosamine-binding lectin HOL-18 in Halichondria okadai (Japanese black sponge), and its antimicrobial and cytotoxic anticancer effects. Int J Biol Macromol 124:819–827. https://doi.org/10.1016/j.ijbiomac.2018.11.222

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Teraoka T, Yamanaka H, Harashima A, Kunisaki A, Takahashi H, Hosokawa D (2000) Purification, crystallization and preliminary X-ray analysis of adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki F. Plant Cell Physiol 41:258–267

    Article  CAS  Google Scholar 

  • Hoffmann JA, Kafatose FC, Janeway CA, Ezekwitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313e1318

    Article  Google Scholar 

  • Honda S, Kashiwagi M, Miyamoto K, Takei Y, Hirose S (2000) Multiplicity,structures, and endocrine and exocrine natures of eel fucose-binding lectins. J Biol Chem 275:e33157

    Article  Google Scholar 

  • Hori K, Miyazawa K, Ito K (1990) Some common properties of lectins from marine algae. Hydrobiologia 204:561–566. https://doi.org/10.1007/BF00040287

    Article  Google Scholar 

  • Hung LD, Ly BM, Hao VT, Trung DT, Trang VTD, Trinh PTH, Ngoc NTD, Quang TM (2018) Purification, characterization and biological effect of lectin from the marine sponge Stylissa flexibilis (LĂ©vi, 1961). Comp Biochem Physiol B Biochem Mol Biol 216:32–38. https://doi.org/10.1016/j.cbpb.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  • Hwang H-J, Han J-W, Jeon H, Han JW (2018) Induction of recombinant lectin expression by an artificially constructed tandem repeat structure: a case study using Bryopsis plumosa mannose-binding lectin. Biomol Ther 8:146. https://doi.org/10.3390/biom8040146

    Article  CAS  Google Scholar 

  • Jiang S-Y, Ma Z, Ramachandran S (2010) Evolutionary history and stress regulation ofthe lectin superfamily in higher plants. BMC Evol Biol 10:79. https://doi.org/10.1186/1471-2148-10-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Yao F, Li X, Jia B, Zhong G, Zhang J, Hou LJG (2015) Molecular cloning,characterization and expression analysis of the protein arginineN-methyltransferase 1 gene(As-PRMT1) from Artemia sinica. Gene 565:122–129

    Article  CAS  Google Scholar 

  • Kawagishi H, Yamawaki M, Isobe S, Usui T, Kimura A, Chiba S (1994) Two lectins from the marine sponge Halichondria okadai. An N-acetyl-sugar-specific lectin (HOL-I) and an N-acetyllactosamine-specific lectin (HOL-II). J Biol Chem 269:1375–1379

    Article  CAS  Google Scholar 

  • Kawsar SMA, Fujii Y, Matsumoto R, Ichikawa T, Tateno H, Hirabayashi J, Yasumitsu H, Dogasaki C, Hosono M, Nitta K, Hamako J, Matsui T, Ozeki Y (2008) Isolation, purification, characterization and glycan-binding profile of a d-galactoside specific lectin from the marine sponge, Halichondria okadai. Comp Biochem Physiol B Biochem Mol Biol 150:349–357. https://doi.org/10.1016/j.cbpb.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  • Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, VanRanst M (2007) Plant lectins are potent inhibitors of coronaviruses byinterfering with two targets in the viral replication cycle. Antivir Res 75:179–187. https://doi.org/10.1016/j.antiviral.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  • Konstantina N, Ioannis KZ (2006) Molecular cloning and characterization of two homologues of mannosebinding lectin in rainbow trout. Fish Shellfish Immunol 21:305e314

    Google Scholar 

  • Lakhtin V, Lakhtin M, Alyoshkin V (2011) Lectins of living organisms. The overview. Anaerobe 17:452–455. https://doi.org/10.1016/j.anaerobe.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zheng S-C, Li Y-L, Li J, Liu H-P (2020) Hemocyte-mediated phagocytosis in crustaceans. Front Immunol 11:268. https://doi.org/10.3389/fimmu.2020.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques DN, de Almeida AS, de Sousa AR, Pereira R, Andrade AL, Chaves RP, Carneiro RF, de Vasconcelos MA, do Nascimento-Neto LG, Pinheiro U, Videira PA, Teixeira EH, Nagano CS, Sampaio AH (2018) Antibacterial activity of a new lectin isolated from the marine sponge Chondrilla caribensis. Int J Biol Macromol 109:1292–1301. https://doi.org/10.1016/j.ijbiomac.2017.11.140

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Sumi H, Hori K (1996) Platelet aggregation is inhibited by phycolectins. Experientia 52:540–543. https://doi.org/10.1007/BF01969724

    Article  CAS  PubMed  Google Scholar 

  • Mebs D, Weiler I, Heinke HF (1985) Bioactive proteins from marine sponges: screening of sponge extracts for hemagglutinating, hemolytic, ichthyotoxic and lethal properties and isolation and characterization of hemagglutinins. Toxicon 23:955–962. https://doi.org/10.1016/0041-0101(85)90388-5

    Article  CAS  PubMed  Google Scholar 

  • Medeiros DS, Medeiros TL, Ribeiro JKC, Monteiro NKV, Migliolo L, Uchoa AF, Vasconcelos IM, Oliveira AS, de Sales MP, Santos EA (2010) A lactose specific lectin from the sponge Cinachyrella apion: purification, characterization, N-terminal sequences alignment and agglutinating activity on Leishmania promastigotes. Comp Biochem Physiol B Biochem Mol Biol 155:211–216. https://doi.org/10.1016/j.cbpb.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298e300

    Article  Google Scholar 

  • Miarons PB, Fresno M (2000) Lectins from tropical sponges: purification and characterization of lectins from genusaplysina*. J Biol Chem 275:29283–29289. https://doi.org/10.1074/jbc.M001366200

    Article  CAS  PubMed  Google Scholar 

  • Moura RM, Queiroz AFS, Fook JMSLL, Dias ASF, Monteiro NKV, Ribeiro JKC, Moura GEDD, Macedo LLP, Santos EA, Sales MP (2006) CvL, a lectin from the marine sponge Cliona varians: isolation, characterization and its effects on pathogenic bacteria and Leishmania promastigotes. Comp Biochem Physiol A Mol Integr Physiol 145:517–523. https://doi.org/10.1016/j.cbpa.2006.08.028

    Article  CAS  PubMed  Google Scholar 

  • MĂĽller WE, Kurelec B, Zahn RK, MĂĽller I, Vaith P, Uhlenbruck G (1979) Aggregation of sponge cells. Function of a lectin in its homologous biological system. J Biol Chem 254:7479–7481

    Article  Google Scholar 

  • MĂĽller WE, Zahn RK, Kurelec B, Lucu C, MĂĽller I, Uhlenbruck G (1981) Lectin, a possible basis for symbiosis between bacteria and sponges. J Bacteriol 145:548–558. https://doi.org/10.1128/jb.145.1.548-558.1981

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng TB, Fai Cheung RC, Wing Ng CC, Fang EF, Wong JH (2015) A review of fish lectins. Curr Protein Pept Sci 16:337–351. https://doi.org/10.2174/138920371604150429160850

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Tsutsui S, Tasumi S, Suetake S, Kikuchi K, Suzuki Y (2005) Tandem repeat L-rhamnosebinding lectin from the skin mucus of ponyfish, Leiognathus nuchalis. Biochem Biophys Res Commun 333:463e469

    Article  Google Scholar 

  • Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44:361

    Article  CAS  Google Scholar 

  • Osorio F, Reis e Sousa C (2011) Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34:651–664. https://doi.org/10.1016/j.immuni.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  • Ottinger CA, Johnson SC, Ewart KV, Brown LL, Ross NW (1999) Enhancement of anti-Aeromonas salmonicida activity in Atlantic salmon (Salmo salar) macrophages by a mannose-binding lectin. Comp Biochem Physiol Part C 123:53e59

    Google Scholar 

  • Pajic I, Kljajic Z, Dogovic N, Sladic D, Juranic Z, Gasic MJ (2002) A novel lectin from the sponge Haliclona cratera: isolation, characterization and biological activity. Comp Biochem Physiol Toxicol Pharmacol 132:213–221. https://doi.org/10.1016/s1532-0456(02)00068-6

    Article  Google Scholar 

  • Peumans WJ, Van Damme E (1995) Lectins as plant defense proteins. Plant Physiol 109:347. https://doi.org/10.1104/pp.109.2.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, MĂĽller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3:179–184. https://doi.org/10.1093/glycob/3.2.179

    Article  CAS  PubMed  Google Scholar 

  • Prokop O, Uhlenbruck G, Köhler W (1968) A new source of antibody-like substances having anti-blood group specificity. A discussion on the specificity of helix agglutinins. Vox Sang 14:321–333. https://doi.org/10.1111/j.1423-0410.1968.tb01722.x

    Article  CAS  PubMed  Google Scholar 

  • Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, Rocha H, Morais AH, Uchoa A, Santos E (2012) A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Mar Drugs 10(4):727–743

    Article  CAS  Google Scholar 

  • Ratheesh S, Rauf AA (2018) Screening of antifungal activity of a lectin isolated from marine sponge Axinella donnani. Trends Biosci 11:1174–1176

    Google Scholar 

  • Rogers D, Hori K (1993) Marine algal lectins: new developments. Hydrobiologia 260:589–593. https://doi.org/10.1007/BF00049075

    Article  Google Scholar 

  • Rogers DJ, Blunden G, Evans PR (1977) Ptilota plumosa, a new source of a blood-group B specific lectin. Med Lab Sci 34(3):193–200

    CAS  PubMed  Google Scholar 

  • Russell S, Lumsden JS (2005) Function and heterogeneity of fish lectins. Vet Immunol Immunopathol 108:111–120. https://doi.org/10.1016/j.vetimm.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  • Santos AFS, NapoleĂŁo TH, Bezerra RF, Carvalho EVMM, Correia MTS, Paiva PMG, Coelho LCBB (2013) In: Berhardt LV (ed) Advances in Medicine and Biology, vol 63. Nova, New York, p 33

    Google Scholar 

  • Saraiva TS, Grund LZ, Komegae EN, Ramos AD, Conceição K, Orii NM, Lopes-Ferreira M, Lima C (2011) Nattectin a fish C-type lectin drives Th1 responses in vivo:licenses macrophages to differentiate into cells exhibiting typical DC function. Int Immunopharmacol 11:1546e1556

    Article  Google Scholar 

  • Sharon N, Lis H (1972) Lectins: cell-agglutinating and sugar-specific proteins. Science 177:949

    Article  CAS  Google Scholar 

  • Schröder HC, Kljajić Z, Weiler BE, Gasić M, Uhlenbruck G, Kurelec B, MĂĽller WEG (1990) The galactose-specific lectin from the sponge Chondrilla nucula displays anti-human immunodeficiency virus activity in vitro via stimulation of the (2′-5′) oligoadenylate metabolism. Antivir Chem Chemother 1:99–105. https://doi.org/10.1177/095632029000100204

    Article  Google Scholar 

  • Schröder HC, Ushijima H, Krasko A, Gamulin V, Thakur NL, Diehl-Seifert B, MĂĽller IM, MĂĽller WEG (2003) Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal metazoa. A tachylectin-related protein in the sponge Suberites domuncula. J Biol Chem 278:32810–32817. https://doi.org/10.1074/jbc.M304116200

    Article  CAS  PubMed  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, MĂĽller IM, MĂĽller WEG (2006) Co-expression and functional interaction of Silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge suberites domuncula *. J Biol Chem 281:12001–12009. https://doi.org/10.1074/jbc.M512677200

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Thakur SR, Bansal P (2015) Algal lectins as promising biomolecules for biomedical research. Crit Rev Microbiol 41:77–88. https://doi.org/10.3109/1040841X.2013.798780

    Article  CAS  PubMed  Google Scholar 

  • Soanes KH, Figuereido K, Richards RC, Mattatall NR, Ewart KV (2004) Sequence and expression of C-type lectin receptors in Atlantic salmon (Salmo salar). Immunogenetics 56:572–584. https://doi.org/10.1007/s00251-004-0719-5

    Article  CAS  PubMed  Google Scholar 

  • Sousa ARO, Andrade FRN, Chaves RP, Sousa BL, Lima DB, Souza RODS, da Silva CGL, Teixeira CS, Sampaio AH, Nagano CS, Carneiro RF (2021) Structural characterization of a galectin isolated from the marine sponge Chondrilla caribensis with leishmanicidal potential. Biochim Biophys Acta Gen Subj 1865:129992. https://doi.org/10.1016/j.bbagen.2021.129992

    Article  CAS  PubMed  Google Scholar 

  • Stalz H, Roth U, Schleuder D, Macht M, Haebel S, Strupat K, Peter-Katalinic J, Hanisch F-G (2006) The Geodia cydonium galectin exhibits prototype and chimera-type characteristics and a unique sequence polymorphism within its carbohydrate recognition domain. Glycobiology 16:402–414. https://doi.org/10.1093/glycob/cwj086

    Article  CAS  PubMed  Google Scholar 

  • Stillmark H (1888) Ueber Ricin, ein giftiges Ferment aus den Samen von Ricinus comm. L. und einigen anderen Euphorbiaceen: Inaugural-Dissertation (Thesis). Dorpat, Schnakenburg

    Google Scholar 

  • Suzuki T, Amano Y, Fujita M, Kobayashi Y, Dohra H, Hirai H, Murata T, Usui T, Morita T, Kawagishi H (2009) Purification, characterization, and cDNA cloning of a lectin from themushroom Pleurocybella porrigens. Biosci Biotechnol Biochem 73:702–709. https://doi.org/10.1271/bbb.80774

    Article  CAS  PubMed  Google Scholar 

  • Tasumi S, Ohira T, Kawazoe I, Suetake H, Suzuki Y, Aida K (2002) Primary structure and characteristics of a lectin from skin mucus of the Japanese eel Anguilla japonica. J Biol Chem 277:27305e27311

    Article  Google Scholar 

  • Teixeira EH, Arruda FVS, Nascimento KS, Carneiro VA, Nagano CS, da Silva BR, Sampaio AH, Cavada BS (2012) Biological applications of plants and algae lectins: an overview. In: Carbohydrates—comprehensive studies on glycobiology and glycotechnology. IntechOpen, London. https://doi.org/10.5772/50632

    Chapter  Google Scholar 

  • Ueda T, Nakamura Y, Smith CM, Copits BA, Inoue A, Ojima T, Matsunaga S, Swanson GT, Sakai R (2013) Isolation of novel prototype galectins from the marine ball sponge Cinachyrella sp. guided by their modulatory activity on mammalian glutamate-gated ion channels. Glycobiology 23:412–425. https://doi.org/10.1093/glycob/cws165

    Article  CAS  PubMed  Google Scholar 

  • Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M et al (2011) Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. Dev Comp Immunol 35:1388–1399. https://doi.org/10.1016/j.dci.2011.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasta GR, Ahmed H, Nita-Lazar M, Banerjee A, Pasek M, Shridhar S, Guha P, Fernández-Robledo JA (2012) Galectins as self/non-self-recognition receptors in innate and adaptive immunity: an unresolved paradox. Front Immunol 3:199. https://doi.org/10.3389/fimmu.2012.00199

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitved L, Holmskov U, Koch C, Teisner B, Hansen S, Salomonsen J, Skjødt K (2000) The homologue of mannose-binding lectin in the carp family Cyprinidae is expressed at high level in spleen, and the deduced primary structure predicts affinity for galactose. Immunogenetics 51:955e964

    Article  Google Scholar 

  • Xue J, Hoorelbeke B, Kagiampakis I, Demeler B, Balzarini J, Liwang PJ (2013) The griffithsin dimer is required for high-potency inhibition of HIV-1: evidence for the manipulation of the structure of gp120 as part of the griffithsin dimer mechanism. Antimicrob Agents Chemother 57:3976–3989

    Article  CAS  Google Scholar 

  • Yao JH, Zhao XY, Liao ZH, Lin J, Chen ZH, Chen F, Song J, Sun XF, Tang KX (2003) Cloning and molecular characterization of a novel lectin gene from Pinellia ternate. Cell Res 13:301–308. https://doi.org/10.1038/sj.cr.7290175

    Article  CAS  PubMed  Google Scholar 

  • Yu XQ, Kanost MR (2004) Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev Comp Immunol 28:891–900

    Article  CAS  Google Scholar 

  • Wang X-W, Wang J-X (2013) Diversity and multiple functions of lectins in shrimp immunity. Dev Comp Immunol 39:27–38. https://doi.org/10.1016/j.dci.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Mangoni A, D’Esposito M, Fattorusso E, Korchagina N, Schröder HC, Grebenjuk VA, Krasko A, Batel R, MĂĽller IM, MĂĽller WEG (2003) The molecular basis for the evolution of the metazoan Bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J Mol Evol 57:S60–S75. https://doi.org/10.1007/s00239-003-0008-1

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, MĂĽller WEG (2005) Molecular control of serial module formation along the apical–basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229. https://doi.org/10.1007/s00427-005-0047-2

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Xiang Y, Liu T, Wang X, Ren X, Ye T, Li G (2019) Oncolytic vaccinia virus expressing Aphrocallistes vastus lectin as a cancer therapeutic agent. Mar Drugs 17:363. https://doi.org/10.3390/md17060363

    Article  CAS  PubMed Central  Google Scholar 

  • Xiong C, Li W, Liu H, Zhang W, Dou J, Bai X, Du Y, Ma X (2006) A normal mucin-binding lectin from the sponge Craniella australiensis. Comp Biochem Physiol Toxicol Pharmacol 143:9–16. https://doi.org/10.1016/j.cbpc.2005.11.008

    Article  CAS  Google Scholar 

  • Zhang H, Robison B, Thorgaard GH, Ristow SS (2000) Cloning, mapping and genomic organization of a fish C-type lectin gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Biochim Biophys Acta 1494:14e22

    Google Scholar 

  • Zhang GQ, Sun J, Wang HX, Ng TB (2009) A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 56:415–421

    Article  CAS  Google Scholar 

  • Zhang G, Sun J, Wang H, Ng TB (2010) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 17:775–781. https://doi.org/10.1016/j.phymed.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  • Zhao JK, Wang HX, Ng TB (2009) Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon 53:360–366. https://doi.org/10.1016/j.toxicon.2008.12.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Salam Rubeena .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abraham, A., Rafeeq, C.M., Karim, R., Rubeena, A.S. (2022). Aquatic Lectins: An Overview (A Paradigm). In: Elumalai, P., Vaseeharan, B., Lakshmi, S. (eds) Aquatic Lectins. Springer, Singapore. https://doi.org/10.1007/978-981-19-0432-5_1

Download citation

Publish with us

Policies and ethics