Skip to main content

The Physicochemical/Electrical Properties of Plasma Activated Medium by Dielectric Barrier Discharge Microplasma

  • Conference paper
  • First Online:
Research and Education: Traditions and Innovations (INTER-ACADEMIA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 422))

Included in the following conference series:

  • 278 Accesses

Abstract

Plasma activated medium (PAM) is a relatively new approach for bacterial inactivation while ensuring safety and maintaining the properties of the material to be sterilized. Recent research reported that PAM is effective for bacterial sterilization up to 8 log reductions in CFU/mL. In this paper, further physicochemical/electrical properties of PAM generation by dielectric barrier discharge microplasma (DBD) were investigated at relatively low discharge voltage. Temperature, water lost, pH, UV–VIS absorbance after 2 months, nitrite/nitrate concentration, resistivity and conductivity were assessed after treatment. The results suggested that microplasma treatment of PAM causes increase in resistivity, acidification, dissolved reactive oxygen and nitrogen species (RONS), creating an environment suitable for sterilization of bacteria. These properties could be preserved for long time under low temperature. Therefore, PAM is an effective method for surface sterilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halfmann, H., Bibinov, N., Wunderlich, J., Awakowicz, P.: A double inductively coupled plasma for sterilization of medical devices. J. Phys. D Appl. Phys 40, 4145 (2007)

    Article  Google Scholar 

  2. Coulter, W.A., Chew-Graham, C.A., Cheung, S.W., Burke, F.J.T.: Autoclave performance and operator knowledge of autoclave use in primary care: a survey of UK practices. J. Hospital Infect. 48, 180–185 (2001)

    Article  Google Scholar 

  3. Shimizu, K., Tran, N.A., Hayashida, K., Blajan, M.G.: Comparison of atmospheric microplasma and plasma jet irradiation for increasing of skin permeability. J. Phys. D Appl. Phys. 49, 315201 (2016)

    Article  Google Scholar 

  4. Azzariti, A., Iacobazzi, R.M., Di, F.R., Porcelli, L., Gristina, R., Favia, P., Sardella, E.: Plasma-activated medium triggers cell death and the presentation of immune activating danger signals in melanoma and pancreatic cancer cells. Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  5. Yahaya, A.G., Okuyama, T., Kristof, J., Blajan, M.G., Shimizu, K.: Direct and indirect bactericidal effects of cold atmospheric-pressure microplasma and plasma jet. Molecules 26, 2523 (2021)

    Article  Google Scholar 

  6. Xu, D., et al.: Effects of plasma-activated water on skin wound healing in mice. Microorganisms 8, 1091 (2020)

    Article  Google Scholar 

  7. Kaushik, N.K., et al.: Biological and medical application of plasma-activated media, water and solutions. Biol. Chem. 400, 39–62 (2018)

    Article  Google Scholar 

  8. Himus, G.W., Hinchley, J.W.: The effect of a current of air on the rate of evaporation of water below the boiling point. J. Soc. Chem. Ind. 43(34), 840–845 (1924)

    Article  Google Scholar 

  9. Yoon, S.-Y., et al.: Effects of gas temperature in the plasma layer on RONS generation in array-type dielectric barrier discharge at atmospheric pressure. Phys. Plasmas 24(12), 123516 (2017)

    Article  Google Scholar 

  10. Joh, H.M., Baek, E.J., Kim, S.J., Chung, T.H.: Effects of the pulse width and oxygen admixture on the production of reactive species in gas- and liquid-phases exposed by bipolar microsecond-pulsed atmospheric pressure helium plasma jets. Phys. Plasmas 26(5), 053509 (2019)

    Article  Google Scholar 

  11. Dikalov, S., Skatchkov, M., Bassenge, E.: Quantification of Peroxynitrite, Superoxide, and Peroxyl radicals by a new spin trap Hydroxylamine 1-Hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem. Biophys. Res. Commun. 230(1), 54–57 (1997)

    Article  Google Scholar 

  12. He, T., et al.: The mechanism of plasma-assisted penetration of NO2− in model tissues. Appl. Phys. Lett. 111(20), 203702 (2017)

    Article  Google Scholar 

  13. Oh, J.-S., et al.: How to assess the plasma delivery of RONS into tissue fluid and tissue. J. Phys. D Appl. Phys. 49(30), 304005 (2016)

    Article  Google Scholar 

  14. Oh, J.-S., et al.: UV–vis spectroscopy study of plasma-activated water: dependence of the chemical composition on plasma exposure time and treatment distance. Jpn. J. Appl. Phy. 57(1), 0102B9 (2017)

    Article  Google Scholar 

  15. Bekeschus, S., et al.: Hydrogen peroxide: aA central player in physical plasma-induced oxidative stress in human blood cells. Free Radical Res. 48(5), 542–549 (2014)

    Article  Google Scholar 

  16. Traylor, M.J., et al.: Long-term antibacterial efficacy of air plasma-activated water. J. Phys. D 44, 472001 (2011)

    Article  Google Scholar 

  17. Giustarini, D., Rossi, R., Milzani, A., Dalle-Donne, I.: Nitrite and nitrate measurement by griess reagent in human plasma: evaluation of interferences and standardization. Methods Enzymol. 440, 361–380 (2008)

    Article  Google Scholar 

  18. Khlyustova, A., Labay, C., Machala, Z., Ginebra, M.-P., Canal, C.: Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review. Front. Chem. Sci. Eng. 13, 238–252 (2019)

    Article  Google Scholar 

  19. Zhao, Y.-M., Patange, A., Sun, D.-W., Tiwari, B.: Plasma-activated water: physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 19, 3951–3979 (2020)

    Article  Google Scholar 

  20. Abuzairi, T., Ramadhanty, S., Puspohadiningrum, D.F., Ratnasari, A., Poespawati, N.R., Purnamaningsih, R.W.: Investigation on physicochemical properties of plasma-activated water for the application of medical device sterilization. AIP Conf. Proc. 1933, 040017 (2018)

    Article  Google Scholar 

  21. Anderson, C.E., Cha, N.R., Lindsay, A.D., Clark, D.S., Graves, D.B.: The role of interfacial reactions in determining plasma–liquid chemistry. Plasma Chem. Plasma Proc. 36(6), 1393–1415 (2016)

    Article  Google Scholar 

  22. Lu, P., Boehm, D., Bourke, P., Cullen, P.J.: Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Proc. Polym. 14(8), 1600207 (2017)

    Article  Google Scholar 

  23. Tachibana, K., Nakamura, T.: Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water. J. Phys. D Appl. Phys. 52(38), 385202 (2019)

    Article  Google Scholar 

  24. Takamatsu, T., et al.: Bacterial inactivation in liquids using multi-gas plasmas. Plasma Med. 2(4), 237–247 (2012)

    Article  Google Scholar 

  25. Lukes, P., Locke, B.R., Brisset, J.-L.: Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments. Plasma Chem. Catal. Gases Liq. 1, 243–308 (2012)

    Article  Google Scholar 

  26. Brisset, J.-L., Benstaali, B., Moussa, D., Fanmoe, J., Njoyim-Tamungang, E.: Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation. Plasma Sources Sci. Technol. 20(3), 034021 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Yahaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yahaya, A.G., Okuyama, T., Kristof, J., Blajan, M.G., Shimizu, K. (2022). The Physicochemical/Electrical Properties of Plasma Activated Medium by Dielectric Barrier Discharge Microplasma. In: Khakhomov, S., Semchenko, I., Demidenko, O., Kovalenko, D. (eds) Research and Education: Traditions and Innovations. INTER-ACADEMIA 2021. Lecture Notes in Networks and Systems, vol 422. Springer, Singapore. https://doi.org/10.1007/978-981-19-0379-3_35

Download citation

Publish with us

Policies and ethics