Skip to main content

Climate Change and Pest Management Strategies in Horticultural and Agricultural Ecosystems

  • Chapter
  • First Online:
Trends in Horticultural Entomology

Abstract

Climate-induced changes in pest activity are likely to affect agricultural production in several ways. Global warming and climate changes will result in: (1) Extension of geographical range of pests, (2) In cooler latitudes, global warming brings new species or biotypes, (3) Increased risk of invasion by migrant pests, and (4) Reduced effectiveness of crop protection technologies. Some of the components of pest management such as host-plant resistance, biopesticides, natural enemies and synthetic chemicals will be rendered less effective as a result of the increase in temperatures and ultraviolet (UV) radiation, and decrease in relative humidity. (5) A 2.4–2.7-fold increase in pesticide use by 2050. Increased probability of pests developing faster resistance to pesticides, (6) Climate change might change the population dynamics of insect pests differently in different agro-ecosystem and ecological zones. Warmer winter temperatures would reduce winter mortality, favouring the increase of pest populations. Due to the climate change, there can be an increase in number of insect pest population, outbreaks of insects, increased number of generations, biotypes thereby having serious consequences leading to the extension of losses due to insect pests. (7) Rising temperatures extend the growing season, (8) Overall temperature increases may influence crop pest interactions by speeding up pest growth rates. Prediction of changes in population dynamics of insect pests will be useful for adapting pest management strategies to mitigate the adverse effects of climate change on crop production. A more holistic inclusion of different management regimes including resistant cultivars, preservation of natural enemy activity, utilizing thresholds, use of pheromones, use of selective insecticides in preference to broad-spectrum usage, landscape manipulation, tillage management, crop rotation, biological control (naturally occurring and safely introduced, classic, mass-reared natural enemies) within an adaptive management context will be critical for managing insect pests in agro-ecosystems within a rapidly changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmalek, B. J., Roy, J., Van Impe, G., & Lebrun, P. (2000). Effect of elevated CO2 on the demography of a leaf-sucking mite feeding on bean. Oecologia, 123, 75–81. https://doi.org/10.1007/s004420050991

    Article  Google Scholar 

  • Abolmaaty, S. M., Khalil, A. A., & Amna, M. H. (2011). Using degree—Day unit accumulation to predict potato tuber worm incidence under climate change conditions in Egypt. Nature and Science, 9(4), 156–160.

    Google Scholar 

  • Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, M. P., Hill, A. D., Lamb, B. K., Miskimins, J., Sawyer, R. F., & Seinfeld, J. H. (2013). Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Sciences India, 110(4), 17768–17773.

    CAS  Google Scholar 

  • Awmack, C. S., Woodcock, C. M., & Harrington, R. (1997). Climate change may increase vulnerability of aphids to natural enemies. Ecological Entomology, 22, 366–368.

    Google Scholar 

  • Bale, J. S., Masters, G. J., Hodkinson, I. D., Caroline Awmack, T., MartijnBezemer, V., Brown, J. B., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Susane Hartley, T., Jones, H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., & Whittaker, J. B. (2002). Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1–16.

    Google Scholar 

  • Bale, J. S., & Hayward, S. A. L. (2010). Insect overwintering in a changing climate. The Journal of Experimental Biology, 213, 980–994.

    CAS  PubMed  Google Scholar 

  • Bezemer, M. T., Jones, H. T., & Knight, K. J. (1998). Longterm effects of elevated CO2 and temperatire on populations of the peach potato aphid, Myzus persicae and its parasitoid Aphidius matricariae. Oecologia, 116(1-2), 128–135.

    PubMed  Google Scholar 

  • Bidart-Bouzat, M. G., & Imeh-Nathaniel, A. (2008). Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology, 50, 1339–1354. https://doi.org/10.1111/j.1744-7909.2008.00751.x

    Article  CAS  PubMed  Google Scholar 

  • Blande, J. D., Pickett, J. A., & Poppy, G. M. (2004). Attack rate and success of the parasitoidDiaeretiellarapae on specialist and generalist feeding aphids. Journal of Chemical Ecology, 33, 1781–1795.

    Google Scholar 

  • Boullis, A., Francis, F., & Verheggen, F. J. (2015). Climate change and tritrophic interactions: Will modifications to greenhouse gas emissions increase the vulnerability of herbivorous insects to natural enemies? Environmental Entomology, 44(2), 277–286.

    CAS  PubMed  Google Scholar 

  • Bruce, T. J., Wadhams, L. J., & Woodcock, C. M. (2005). Insect host location: A volatile situation. Trends in Plant Science, 10, 269–274.

    CAS  PubMed  Google Scholar 

  • Caffarra, A., Rinaldi, M., Eccel, E., Rossi, V., & Pertot, I. (2012). Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems and Environment, 148, 89–101. https://doi.org/10.1016/j.agee.2011.11.017

    Article  Google Scholar 

  • Cagan, L., Tancik, J., & Hassan, S. (1998). Natural parasitism of the European corn borer eggs Ostrinia nubilalis Hbn. (Lep., Pyralidae) by Trichogramma in Slovakia—Need for field releases of the natural enemy. Journal of Applied Entomology, 122, 315–318. https://doi.org/10.1111/j.1439-0418.1998.tb01504.x

    Article  Google Scholar 

  • Chen, C. C., & McCarl, B. A. (2001). An investigation of the relationship between pesticide us age and climate change. Climatic Change, 50(475), 478.

    Google Scholar 

  • Chen, D. H., Ye, G. Y., Yang, C. Q., Chen, Y., & Wu, Y. K. (2005a). The effect of high temperature on the insecticidal properties of Bt cotton. Environmental and Experimental Botany, 53, 333–342.

    Google Scholar 

  • Chen, F. J., Wu, G., & Ge, F. (2005b). Study on the function mode of elevated CO2 on the growth and development of cotton aphid Aphis gossypii (glover) sucking on transgenic Bt cotton and non-transgenic cotton. Acta Ecologica Sinica, 25(10), 2601–2607.

    CAS  Google Scholar 

  • Chen, F. J., Wu, G., Ge, F., Parajulee, M. N., & Shrestha, R. B. (2005c). Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomologia Experimentalis et Applicata, 115(341), 350.

    Google Scholar 

  • Chen, F. J., Wu, G., Lü, J., & Ge, F. (2005d). Effects of elevated CO2 on the foraging behaviour of cot ton bollworm, Helicoverpa armigera. Insect Sci., 12, 359–365.

    CAS  Google Scholar 

  • Cock, M. J. W., Biesmeijer, J. C., Cannon, R. J. C., Gerard, P. J., Gillespie, D., Jiménez, J. J., Lavelle, P. M., & Raina, S. K. (2013). The implications of climate change for positive contributions of invertebrates to world agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 8, 28. https://doi.org/10.1079/pavsnnr20138028

    Article  Google Scholar 

  • Coll, M., & Hughes, L. (2008). Effects of elevated CO2 on an insect omnivore: A test for nutritional effects mediated by host plants and prey. Agriculture, Ecosystems and Environment, 123, 271–279.

    CAS  Google Scholar 

  • Corlett, T. T., & LaFrankie, J. V., Jr. (1998). Potential impacts of climate change on tropical Asian forests through and influences on phenology. Climate Change, 39, 439–454.

    Google Scholar 

  • Coviella, C., & Trumble, J. (1999). Effects of elevated atmospheric carbon dioxide on insect plant interactions. Conservation Biology, 13, 700–712.

    Google Scholar 

  • Das, D. K., Singh, J., & Vennila, S. (2011). Emerging crop pest scenario under the impact of climate change – A brief review. Journal of Agricultural Physics, 11, 13–20.

    CAS  Google Scholar 

  • DeLucia, E. H., Casteel, C. L., Nabity, P. D., & O’Neill, B. F. (2008). Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proceedings National Acadamic Science of USA, 105, 1781–1782. https://doi.org/10.1073/pnas.0712056105

    Article  Google Scholar 

  • Deuter, P. (2008). Defining the impacts of climate change on horticulture in Australia. In R. Garnaut (Ed.), Garnaut climate change review. Accessed at http://www.garnautreview.org.au/2008-review.html

    Google Scholar 

  • Diffenbaugh, N., Giorgi, F., & Pal, J. (2008). Climate change hotspots in the United States. Geophysical Research Letters, 35. https://doi.org/10.1029/2008GL035075

  • Elphinstone, J., & Toth, I. K. (2008). Erwinia chrysanthemi (Dikeya spp.) – The facts. Potato Council.

    Google Scholar 

  • Gang, W., Chen, F., Sun, C., & Feng, G. (2007). Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hubner), fed on cotton bolls under elevated CO2. Journal of Environmental Sciences, 19, 1318–1325.

    Google Scholar 

  • Gent, D. H., Du Toit, L. J., Fichtner, S. F., Mohan, S. K., Pappu, H. R., & Schwartz, H. F. (2006). Iris yellow spot virus: An emerging threat to onion bulb and seed production. Plant Disease, 90, 1468–1480.

    PubMed  Google Scholar 

  • Georghiou, G. P., & Taylor, C. E. (1986). Factors influencing the evolution of resistance. In National Research Council (Ed.), Pesticide resistance: Strategies and tactics for management. (pp. 157–169). National Academy Press.

    Google Scholar 

  • Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.

    CAS  PubMed  Google Scholar 

  • Gutierrez, A. P., Daane, K. M., Ponti, L., Walton, V. M., & Ellis, C. K. (2008a). Prospective evaluation of the biological control of vine mealybug: Refuge effects and climate. Journal of Applied Ecology, 45, 524–536.

    Google Scholar 

  • Gutierrez, A. P., Ponti, L., Oultremont, T., & Ellis, C. K. (2008b). Climate change effect s on poikilotherm tritrophic interactions. Climatic Change, 87, 167–192.

    Google Scholar 

  • Gutierrez, A. P., Ponti, L., Cooper, M. L., Gilioli, G., Baumgartner, J., & Duso, C. (2012). Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California. Agricultural and Forest Entomology, 14, 225–238. https://doi.org/10.1111/j.1461-9563.2011.00566.x

    Article  Google Scholar 

  • Gutierrez, A. P., Ponti, L., Hoddle, M., Almeida, R. P. P., & Irvin, N. A. (2011). Geographic distribution and relative abundance of the invasive glassy-winged sharpshooter: Effects of temperature and egg parasitoids. Environmental Entomology, 40, 755–769. https://doi.org/10.1603/en10174

    Article  PubMed  Google Scholar 

  • Hahn, D. A., & Denlinger, D. L. (2007). Meeting the energetic demands of insect diapaus e: Nut rient storage and utilization. Journal of Insect Physiology, 53, 760–773.

    CAS  PubMed  Google Scholar 

  • Hance, T. J., Vernon, P., & Boivin, G. (2007). Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52, 107–126.

    CAS  PubMed  Google Scholar 

  • Harrington, R., Dewar, A. M., & George, B. (1989). Forecasting the incidence of virus yellows in sugar beet in England. Annals of Applied Biology, 114(3), 459–469. https://doi.org/10.1111/j.1744-7348.1989.tb03361.x

    Article  Google Scholar 

  • Harrington, R., Fleming, R., & Woiwood, I. P. (2001). Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agriculture and Forest Entomology, 3, 233–240.

    Google Scholar 

  • Heagle, A. S., Burns, J. C., Fisher, D. S., & Miller, J. E. (2002). Effects of carbon dioxide enrichment on leaf chemistry and reproduction by two-spotted Spider Mites (Acari: Tetranychidae) on White Clover. Environmental Entomology, 31(4), 594–601. https://doi.org/10.1603/0046-225X-31.4.594

    Article  CAS  Google Scholar 

  • Heeb, L., Jenner, E., & Cock, M. J. W. (2019). Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. Journal of Pest Science, 2019(92), 951–969. https://doi.org/10.1007/s10340-019-01083-y

    Article  Google Scholar 

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukeet, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22(3), 534–543.

    PubMed  Google Scholar 

  • Hill, M. G., & Dymock, J. J. (1989). Impact of climate change: Agricultural/horticultural systems. DSIR Entomology Division Submission to the New Zealand Climate Change Program (p. 16). Department of Scientific and Industrial Research.

    Google Scholar 

  • Hilder, V. A., & Boulter, D. (1999). Genetic engineering of crop plants for insect resistance—A critical review. Crop Protection, 18, 177–191.

    Google Scholar 

  • Hochuli, D. F. (1996). The ecology of plant/insect interactions: Implications of digestive strategy for feeding by phytophagous insects. Oikos, 75, 133–141.

    Google Scholar 

  • Holopainen, J. K., Himanen, S., & Poppy, G. (2013). Climate change and its effects on the chemical ecology of insect parasitoids. In E. Wajnberg & S. Colazza (Eds.), Chemical ecology of insect Parasitoids (pp. 168–190). John Wiley and Sons.

    Google Scholar 

  • Hunter, M. D. (2001). Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agricultural Forest Entomology, 3, 153–159.

    Google Scholar 

  • IPCC 2007: Summary for policymakers. In: Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, .

    Google Scholar 

  • IPCC (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V et al. (eds.)].

    Google Scholar 

  • IPCC. (2013). Climate change 2013.The physical science basis. Contribution of working group I to the fifth assessment report of the IPCC. Cambridge University press.

    Google Scholar 

  • Isman, M. B. (1997). Neem and other botanical pesticides: Barriers to commercialization. Phytoparasitica, 25, 339–344.

    Google Scholar 

  • Jonsson, A. M., Appelberg, G., Harding, S., & Barring, L. (2009). Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, IPS typographus. Global Change Biology, 15, 486–499.

    Google Scholar 

  • Kaiser, J. (1996). Pests overwhelm Bt cotton crop. Nature, 273, 423.

    CAS  Google Scholar 

  • Kalyebi, A., Overholt, W. A., Schulthess, F., Mueke, J. M., & Sithanantham, S. (2006). The effect of temperature and humidity on the bionomics of six African egg parasitoids (Hymenoptera: Trichogrammatidae). Bulletin of Entomological Research, 96, 305–314.

    CAS  PubMed  Google Scholar 

  • Kambrekar, D. N., Guledgudda, S. S., Katti, A., & Mohankumar. (2015). Impact of climate change on insect pests and their natural enemies. Karnataka Journal of Agricultural Science (Special Issue), 28(5), 814–816.

    Google Scholar 

  • Kannan, R., & James, D. A. (2009). Effects of climate change on global biodiversity: A review of key literature. Tropical Ecology, 50, 31–39.

    Google Scholar 

  • Kavikumar, K. S. (2010). Climate sensitivity of Indian agriculture: role of technological development and information diffusion, national symposium on climate change and rainfed agriculture, February 18-20, 2010. Indian Society of Dryland Agriculture, Central Research Institute for Dryland Agriculture, Hyderabad, India, 192p.

    Google Scholar 

  • Khalil, A. A., Abolmaaty, S. M., Hassancin, M. K., El-Mtewally, M. M., & Moustafa, S. A. (2010). Degree-days units and expected generation numbers of peach fruit by Bactrocera zonata (Saunders) (Diptera: Tephritidae) under climate change in Egypt. Egyptian Academic Journal Biological Science, 3(1), 11–19.

    Google Scholar 

  • Kiritani, K. (2006). Predicting impacts of global warming on population dynamics and dynamics and distribution of arthropods in Japan. Population Ecology, 48, 5–12.

    Google Scholar 

  • Kocsis, S. M., & Hufnagel, L. (2011). Impacts of climate change on lepidoptera species and communities. Applied Ecology and Environmental Research, 9(1), 43–72.

    Google Scholar 

  • Kuchlein, J., & Ellis, W. N. (1997). Climate-induced changes in the microlepidoptera fauna of the Netherlands and the implications for nature conservation. Journal of Insect Conservation, 1, 73–80. https://doi.org/10.1023/A:1018483026265

    Article  Google Scholar 

  • Lange, H., Okland, B., & Krokene, P. (2006). Thresholds in the life cycle of the spruce bark beetle under climate change. International Journal for Complex Systems, 1648L, 1–10.

    Google Scholar 

  • Legrand, M. A., Colinet, H., Vernon, P., & Hance, T. (2004). Autumn, winter and spring dynamics of aphid Sitobion avenae and parasitoid Aphidius rhopalosiphi interactions. Annals of Applied Biology, 145(139), 144.

    Google Scholar 

  • Lu, N., Liski, J., Chang, R. Y., Akujarvi, A., Wu, X., Jin, T. T., Wang, Y. F., & Fu, B. J. (2013). Soil organic carbon dynamics of black locust plantations in the middle loess plateau. Biogeosciences, 10, 7053–7063.

    CAS  Google Scholar 

  • Lewis, T. (1997). Thrips as crop pests. CAB international (p. 740). University Press.

    Google Scholar 

  • Logan, J., Regniere, J., & Powell, J. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1. https://doi.org/10.2307/3867985

  • Maixner, M. (2005). Risks posed by the spread and dissemination of grapevine pathogens and their vectors. In D. V. Alford & G. F. Backhaus (Eds.), Plant protection and plant health in Europe: Introduction and spread of invasive species (pp. 141–146). The British Crop Protection Council.

    Google Scholar 

  • Marchioro, C. A., & Foerster, L. A. (2011). Ecology, behavior and bionomics development and survival of the diamondback moth, Plutella xylostella (L.) (lepidoptera: Yponomeutidae) as a function of temperature: Effect on the number of generations in tropical and subtropical regions. Neotropic Entomology., 41(5), 533–541.

    Google Scholar 

  • Martin-Vertedor, D., Ferrero-Garcia, J. J., & Torres-Vila, L. M. (2010). Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agricultural and Forest Entomology, 12, 169–176. https://doi.org/10.1111/j.1461-9563.2009.00465.x

    Article  Google Scholar 

  • Masters, G., & Norgrove, L. (2010). Climate change and invasive alien species. CABI Work Pap, 1, 1–30.

    Google Scholar 

  • Mattson, W. J., & Haack, R. J. (1987). The role of drought in outbreaks of plant-eating insects. Bioscience, 37, 374–380.

    Google Scholar 

  • Menendez, R. (2007). How are insects responding to global warming. Tijdschriftvoor Entomologie, 150, 355–365.

    Google Scholar 

  • Morimoto, N., Imura, O., & Kiura, T. (1998). Potential effects of global warming on the occurrence of Japanese pest insects. Applied Entomology and Zoology, 33(1), 147–155.

    Google Scholar 

  • Musolin, D. (2007). Insects in a warmer world: Ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology, 13, 1565–1585.

    Google Scholar 

  • Musser, F. P., & Shelton, A. M. (2005). The influence of postexposure temperature on the toxicity of insecticides to Ost rinianubilalis (lepidoptera: Crambidae). Pest Management Science, 61, 508–510.

    CAS  PubMed  Google Scholar 

  • Nandudu, P. (2014). As Uganda heats up, pests and disease flourish to attack its top export crop. http://www.globa lissu es.org/ news/2014/09/17/20036. Accessed 21 May 2018.

    Google Scholar 

  • Nault, L. R. (1997). Arthropod transmission of plant viruses—A new synthesis. Annals of the Entomological Society of America, 90, 521–541.

    Google Scholar 

  • Neill, O., Zangerl, A. R., DeLucia, E. H., & Berenbaum, M. R. (2008). Longevity and fecundity of Japanese beetle (Popillia japonica) on foliage grown under elevated carbon dioxide. Environmental Entomology, 37(2), 601–607.

    Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42. https://doi.org/10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  • Patterson, D. T., Westbrook, J. K., Joyce, R. J. V., Lingren, P. D., & Rogasik, J. (1999). Weeds, insects, and diseases. Climatic Change, 43, 711–727. https://doi.org/10.1023/A:1005549400875

    Article  CAS  Google Scholar 

  • Parvatha Reddy, P. (2013). Impact of climate change on insect pests, pathogens and nematodes. Pest Management in Horticultural Ecosystems, 19(2), 225–233.

    Google Scholar 

  • Pathak, H. Aggarwal, P. K. and Singh, S. D. (2012). Climate change impact, adaptation and mitigation in agriculture: Methodology for assessment and application division of environmental sciences, Indian Agricultural Research Institute New Delhi, pp 111–130.

    Google Scholar 

  • Percy, K., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G., Pregitzerk, K. S., Hendrey, G. R., Dickson, R. E., Zak, D. R., Oksanenq, E., Soberk, J., Harrington, R., & Karnoskyk, D. F. (2002). Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 420, 403–407.

    CAS  PubMed  Google Scholar 

  • Pickett, J. A., & Glinwood, R. T. (2007). Chemical ecology. In H. F. Van Emden & R. Harrington (Eds.), Aphids as crop pests (pp. 235–260). CABI.

    Google Scholar 

  • Pinto, D. M., Nerg, A. M., & Holopainen, J. K. (2007). The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. Journal of Chemical Ecology, 33, 2218–2228.

    CAS  PubMed  Google Scholar 

  • Pollan, S. (2009). Effect of temperature on development of the microsporidium Nosema lymantriae and disease progress in the hostLymantria dispar. Master thesis. Institute of Forest Entomology, BOKU University of Natural Resources and Applied Life Sciences, Vienna, pp. 1–54.

    Google Scholar 

  • Pons, X., & Tatchell, G. M. (1995). Drought stress and cereal aphid performance. The Annals of Applied Biology, 126, 19–31.

    Google Scholar 

  • Prasad, Y. G., & Bambawale, O. M. (2010). Effects of climate change on natural control of insect pests. Indian Journal of Dryland Agricultural Research & Devevelopment, 25(2), 1–12.

    Google Scholar 

  • Qi, A., Dewar, A. M., & Harrington, R. (2005). Forecasting virus yellows incidence in sugar beet- the post- Guacho era. Aspects Applied Biology, 76, 87–94.

    Google Scholar 

  • Reineke, A., & Thiery, D. (2016). Grapevine insect pests and their natural enemies in the age of global warming. Journal Pest Science. https://doi.org/10.1007/s10340-016-0761-8

  • Reiners, S and Petzoldt C (eds.) (2005). Integrated crop and pest management guidelines for commercial vegetable production. Cornell Cooperative Extension publication 124VG. https://cropandpestguides.cce.cornell.edu

  • Ricketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., Gemmil-Herren, B., Greenleaf, S. S., Klein, A. M., Mayfield, M. M., Morandin, L. A., Ochieng, A., & Viana, B. F. (2008). Landscape effects on crop pollination services: Are there general patterns? Ecology Letters, 11, 499–515.

    PubMed  Google Scholar 

  • Robert, Y., Woodford, J. A. T., & Ducray-Bourdin, D. G. (2000). Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Research, 71(33), 47.

    Google Scholar 

  • Robinson, E. A., Ryan, G. D., & Newman, J. A. (2012). A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. The New Phytologist, 194, 321–336. https://doi.org/10.1111/j.1469-8137.2012.04074.x

    Article  CAS  PubMed  Google Scholar 

  • Rojas, M. R., & Gilbertson, R. L. (2008). Emerging plant viruses: A diversity of mechanisms and oppurtunities. In M. J. Roossinck (Ed.), Plant virus evolution (pp. 27–51). Springer.

    Google Scholar 

  • Rosemary Collier 2009. The impact of climate change on pests of horticultural crops. Series.p://www2.warwick.ac.uk/fac/sci/whri/research/climatechange/cgpests/.

    Google Scholar 

  • Rosemary Collier, Jane Fellows, Adams, S., Semenov, M., & Thomas, B. (2008). Vulnerability of horticultural crop production to extreme weather events. Effects of climate change on plants: Implications for agriculture. Aspects of Applied Biology, 88, 3–13.

    Google Scholar 

  • Roy, D. B., & Sparks, T. H. (2000). Phenology of British butterflies and climate change. Global Change Biology, 6, 407–416.

    Google Scholar 

  • Sangle, P. M., Satpute, S. B., Khan, F. S., & Rode, N. S. (2015). Impact of climate change on insects. Trends in Biosciences, 8(14), 3579–3582.

    Google Scholar 

  • Sentis, A., Hemptinne, J. L., & Brodeur, J. (2013). Effects of simulated heat waves on an experimental plant-herbivore- predator food chain. Global Change Biology, 19, 833–842.

    PubMed  Google Scholar 

  • Sharma, H. C. (2005). Heliothis/Helicoverpa management: Emerging trends and strategies for future research (p. 469). Oxford and IBH Science Publishers.

    Google Scholar 

  • Sharma, H. C., Mukuru, S. Z., Manyasa, E., & Were, J. (1999). Breakdown of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica, 109, 131–140.

    Google Scholar 

  • Sharma, H. C., Sullivan, D. J., & Bhatnagar, V. S. (2002). Population dynamics of the oriental armyworm, Mythimna separata (Walker) (lepidoptera: Noctuidae) in south-Central India. Crop Protection, 21, 721–732.

    Google Scholar 

  • Sharma, H.C. 2010. Effect of climate change on IPM in grain legumes. In: Fifth International Food Legumes Research Conference (IFLRC V), and the Seventh European Conference on Grain Legumes (AEP VII), 26.30 April 2010, Anatalaya, Turkey.

    Google Scholar 

  • Shelton, A. M., Wilsey, W. R., & Soderlund, D. M. (2001). Classification of insecticides and acaricides for resistance management. Dept. of Entomology, NYSAES. 315-787-2352. http://www.nysaes.cornell.edu/ent/faculty/Shelton/pdf/res_mgmt.pdf.

  • Stoeckli, S., Hirschi, M., Spirig, C., Calance, P., Rotach, M. W., & Samletz, J. (2012). Impact of climate change on voltinism and prospective diapause induction of a global insect—Cydia pomonella (L.). PLoS One, 7(4), e35723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skirvin, D. J., Perry, J. N., & Harrington, R. (1997). The effect of climate change on an aphid coccinellid interaction. Global Change Biology, 3, 1–11.

    Google Scholar 

  • Srinivasa Rao, M., Srinivas, K., Vanaja, M., Rao, G. G. S. N. and Venkateswarlu, B. (2008). Impact of elevated CO2 on insect herbivore-host interactions. Research Bulletin. Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad India. 36p.

    Google Scholar 

  • Srinivasa Rao, M., Srinivas, K., Vanaja, M., Rao, G. G. S. N., Venkateswarlu, B., & Ramakrishna, Y. S. (2009). Host plant (Ricinus communis Linn) mediated effects of elevated CO2 on growth performance of two insect folivores. Current Science, 97, 1047–1054.

    Google Scholar 

  • Stireman, J. O., Dyer, L. A., Janzen, D. H., Singer, M. S., Lill, J. T., Marquis, R. J., Ricklefs, R. E., Gentry, G. L., Hallwachs, W., Coley, P. D., Barone, J. A., Greeney, H. F., Connahs, H., Barbosa, P., Morais, H. C., & Diniz, I. R. (2005). Climatic unpredictability and parasitism of caterpillars: Implications of global warming. Proceedings of the National Academy of Sciences USA, 102, 17384–17387.

    CAS  Google Scholar 

  • Svobodova, E., Trnka, M., Dubrovsky, M., Semeradova, D., Eitzinger, J., Stepanek, P., & Zalud, Z. (2014). Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Management Science, 70, 708–715. https://doi.org/10.1002/ps.3622

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M. B., & Blanford, S. (2003). Thermal biology in insect parasite interactions. Trends in Ecology & Evolution, 18, 344–350.

    Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Fereira de Sigueira, M., Grainger, A., Hannah, H. L., Huntley, B., Jaarsveld van, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend, P. A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    CAS  PubMed  Google Scholar 

  • Thomson, L. J., Macfadyen, S., & Hoffmann, A. A. (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52, 296–306.

    Google Scholar 

  • Tilman, D., Fargione, J., Wolff, B., Antonio, D. C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284.

    CAS  PubMed  Google Scholar 

  • Tobin, P. C., Nagarkatti, S., Loeab, G., & Saunders, M. C. (2008). Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biology, 14, 951–957.

    Google Scholar 

  • Trumble, J. T., & Butler, C. D. (2009). Climate change will exacerbate California’s insect pest problems. California Agriculture, 63, 73–78. https://doi.org/10.3733/ca.v063n02p73

    Article  Google Scholar 

  • Vincent, C., Hallman, G., Panneton, B., & Fleurat-Lessardú, F. (2003). Management of agricultural insects with physical control methods. Annual Review of Entomology, 48, 261–281.

    CAS  PubMed  Google Scholar 

  • Vogelweith, F., Moret, Y., Thiery, D., & Moreau, J. (2013). Lobesia botrana larvae develop faster in the presence of parasitoids. PLoS One. https://doi.org/10.1371/journal.pone.0072568

  • Volney, W. J., & Fleming, R. (2000). Climate change and impacts of boreal forest insects. Agriculture, Ecosystems & Environment., 82, 283–294. https://doi.org/10.1016/S0167-8809(00)00232-2

    Article  Google Scholar 

  • Waldbauer, G. P. (1968). The consumption and utilization of food by insects. Advances in Physiology Education, 5, 229–288.

    Google Scholar 

  • Webster, B. (2012). The role of olfaction in aphid host location. Physiological Entomology, 37, 10–18.

    Google Scholar 

  • Webster, B., Bruce, T., Pickett, J. A., & Hardie, J. (2008). Olfactory recognition of host plants in the absence of hostspecific volatile compounds. Communicative & Integrative Biology, 1, 167–169.

    Google Scholar 

  • Whittaker, J. B. (1999). Impacts and responses at population level of herbivorous insects to elevated CO2. European Journal of Entomology, 96(149), 156.

    Google Scholar 

  • Willis C G, Ruhfel B, Primack R B, Miller Rushing A J and Davis C.C. 2008 Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences, USA 105: 17029-17033.

    Google Scholar 

  • Wu, G., Chen, F. J., & Ge, F. (2006a). Direct effects of elevated CO2 on growth, development and reproduction of cotton bollworm, Helicoverpa armigera Hubner. Acta Ecologica Sinica, 25(6), 1732–1738.

    Google Scholar 

  • Wu, G., Chen, F. J., & Ge, F. (2006b). Response of multiple generations of cotton bollworm Helicoverpa armigera Hubner, feeding on spring wheat, to elevated CO2. Journal of Applied Entomology, 130(1), 2–9.

    Google Scholar 

  • Yamamura, K., & Kirtani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 33(2), 289–298.

    Google Scholar 

  • Zalucki, M. P., & van Klinken, R. D. (2006). Predicting population dynamics of weed biological control agents: Science or gazing into crystal balls? Australian Journal of Entomology, 45, 331–344.

    Google Scholar 

  • Zhou, X., Harrington, R., Woiwod, I. P., & Perry, J. N. (1995). Effects of temperature on aphid phenology. Global Change Biology, 1, 303–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasa Rao, M. et al. (2022). Climate Change and Pest Management Strategies in Horticultural and Agricultural Ecosystems. In: Mani, M. (eds) Trends in Horticultural Entomology . Springer, Singapore. https://doi.org/10.1007/978-981-19-0343-4_3

Download citation

Publish with us

Policies and ethics