Skip to main content

Ergodic Secrecy Capacity Analysis Over Composite Weibull/Inverse Gamma Fading Channel

  • Conference paper
  • First Online:
VLSI, Microwave and Wireless Technologies

Abstract

In this work, the secrecy performance of traditional Wyner’s model over more realistic composite wireless fading channel, i.e., Weibull/Inverse Gamma, is investigated. The closed-form expression of average ergodic secrecy capacity is developed in terms of Fox’s H-function. The efficacy of the proposed solution is validated through Monte–Carlo simulation. Moreover, the importance of channel state information of eavesdropper and the multipath parameter in compensating the secrecy concern at the physical layer is comprehensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cotton SL, Scanlon WG (2007) Characterization and modeling of the indoor radio channel at 868 MHz for a mobile bodyworn wireless personal area network. IEEE Antennas Wireless Propag Lett 6:51–55

    Article  Google Scholar 

  2. Cotton SL, Scanlon WG (2006) Indoor channel characterisation for a wearable antenna array at 868 MHz. IEEE wireless communications and networking conference. WCNC, Las Vegas, NV, USA, pp 1783–1788

    Google Scholar 

  3. Vermesan O, Friess P (2004) Internet of things-from research and innovation to market deployment. River Publishers, Aalborg, Denmark

    Google Scholar 

  4. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126

    Article  MathSciNet  Google Scholar 

  5. Maurer UM (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theo 39(3):733–742

    Article  MathSciNet  Google Scholar 

  6. Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387

    Article  MathSciNet  Google Scholar 

  7. Leung-Yan-Cheong S, Hellman M (1978) The gaussian wire-tap channel. IEEE Trans Inf Theo 24(4):451–456

    Article  MathSciNet  Google Scholar 

  8. Barros J, Rodrigues MRD (2006) Secrecy capacity of wireless channels. IEEE international symposium on information theory. Seattle, WA, USA, pp 356–360

    Google Scholar 

  9. Sarkar M, Ratnarajah T, Sellathurai M (2009) Secrecy capacity of Nakagami-m fading wireless channels in the presence of multiple eavesdroppers. In: Proceedings of 2014 mediterranean microwave symposium (MMS2014). Marrakech, Morocco, pp 1–6

    Google Scholar 

  10. Xu L, Yu X, Wang H et al (2019) Physical layer security performance of mobile vehicular networks. Mob Netw Appl 25:1–7

    Google Scholar 

  11. Kumar R, Chauhan SS (2018) Secrecy analysis of MRT/RAS system under Nakagami-m fading channels in the presence of imperfect channel state information. AEU—Int J Electron Commun 85:68–73

    Google Scholar 

  12. Liu X (2013) Probability of strictly positive secrecy capacity of the Weibull fading channel. 2013 IEEE Global communications conference (GLOBECOM). Atlanta, GA, pp 659–664

    Google Scholar 

  13. Liu X (2013) Probability of strictly positive secrecy capacity of the Rician-Rician fading channel. IEEE Wireless Commun Lett 2(1):50–53

    Article  Google Scholar 

  14. Kong L, Tran H, Kaddoum G (2016) Performance analysis of physical layer security over \(\alpha -\mu \) fading channel. Electron Lett 52(1):45–47

    Article  Google Scholar 

  15. Mathur A, Yun A, Bhatnagar MR, Cheffena M, Ohtsuki T (2018) On physical layer security of \(\alpha -\eta -\kappa -\mu \) fading channels. IEEE Commun Lett 22(10):2168–2172

    Article  Google Scholar 

  16. Alexandropoulos GC, Peppas KP (2018) Secrecy outage analysis over correlated composite Nakagami-m/Gamma fading channels. IEEE Commun Lett 22(1):77–80

    Article  Google Scholar 

  17. Sun J, Li X, Huang M, Ding Y, Jin J et al (2018) Performance analysis of physical layer security over \(\kappa -\mu \) shadowed fading channels. IET Commun 12(8):970–975

    Article  Google Scholar 

  18. Srinivasan M, Kalyani S (2018) Secrecy capacity of \(\kappa -\mu \) shadowed fading channels. IEEE Commun Lett 22(8):1728–1731

    Article  Google Scholar 

  19. Upaddhyay VK, Chauhan PS, Soni SK, Mishra B (2020) On the performance analysis of cognitive radio based wireless system over Weibull-inverse gamma composite fading channel. International conference on electrical and electronics engineering (ICE3). Gorakhpur, India, pp 484–488

    Chapter  Google Scholar 

  20. Karadimas P, Kotsopoulos SA (2018) The Weibull-lognormal fading channel: analysis, simulation, validation. IEEE Trans Veh Technol 58(7):3308–813

    Google Scholar 

  21. Chauhan PS, Kumar S, Soni SK (2020) On the physical layer security over Beaulieu-Xie fading channel. AEU—Int J Electron Commun 113:152940

    Google Scholar 

  22. Gradshteyn I, Ryzhik I (2007) Table of Integrals, Series, and Products. 7th: Academic Press

    Google Scholar 

  23. Abramowitz M, Stegun I (1988) Handbook of mathematical functions: with formulas, graphs, and mathematical tables

    Google Scholar 

  24. Kilbas AA, Saigo M (2004) H-transforms theory and applications

    Google Scholar 

  25. Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series more special functions 1st ed. Gordon

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Upaddhyay, V.K., Chauhan, P.S., Soni, S.K. (2023). Ergodic Secrecy Capacity Analysis Over Composite Weibull/Inverse Gamma Fading Channel. In: Mishra, B., Tiwari, M. (eds) VLSI, Microwave and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 877. Springer, Singapore. https://doi.org/10.1007/978-981-19-0312-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0312-0_49

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0311-3

  • Online ISBN: 978-981-19-0312-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics