Skip to main content

Variation of the Wind Profiles in the Tropical Tropopause Layer Associated with QBO-MJO Connection: An Equatorial Atmosphere Radar Observation

  • Conference paper
  • First Online:
Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, 2021

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 275))

  • 343 Accesses

Abstract

The Quasi-Biennial Oscillation (QBO) is known as the alternating zonal wind in the stratosphere that is discovered to have a connection with tropospheric Madden–Julian Oscillation (MJO), particularly during the northern hemisphere winter. Discussion on the variation of wind profiles in the tropical tropopause layer (TTL), the transition layer between troposphere-stratosphere at 14–18.5 km, related to QBO-MJO connection is still limited due to the availability of high vertical and temporal resolution of observation data. We investigate 3-D wind profiles by Equatorial Atmosphere Radar (EAR) with 150 m vertical resolution during extended boreal winter (November to March) throughout 2003–2009 (16 years). We find five MJO active cases in the easterly QBO phase (QBOE), six during the westerly QBO phase (QBOW), and 20 in the transition phase or neutral QBO (QBON). The QBO index is defined as the change of zonal wind at 18.7 km obtained from EAR data. We observed radar tropopause (maximum echo power within TTL) to be lifted to 17.4 km during MJO active associated with QBOE compared to MJO active period during QBOW (16.7 km) and QBON (16.8 km). We also discover that vertical wind is stronger above the tropopause, representing more updraft activity (0.02–0.03 m/s) in QBOE than QBOW and QBON.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldwin, M.P., Gray, L.J., Dunkerton, T.J., Hamilton, K., Haynes, P.H., Randel, W.J., Holton, J.R., Alexander, M.J., Hirota, I., Horinouchi, T., Jones, D.B.A., Kinnersley, J.S., Marquardt, C., Sato, K., Takahashi, M.: The quasi-biennial oscillation. Rev. Geophys. (2001). https://doi.org/10.1029/1999RG000073

    Article  Google Scholar 

  2. Giorgetta, M.A., Bengtsson, L., Arpe, K.: An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Clim. Dyn. (1999)

    Google Scholar 

  3. Lu, H., Bracegirdle, T.J., Phillips, T., Bushell, A., Gray, L.: Mechanisms for the Holton-Tan relationship and its decadal variation. J. Geophys. Res. 119(6) (2014). https://doi.org/10.1002/2013JD021352

  4. Zhang, C.: Madden-Julian oscillation. Rev. Geophys. (2005). https://doi.org/10.1029/2004RG000158

    Article  Google Scholar 

  5. Zhang, C., Zhang, B.: QBO-MJO connection. J. Geophys. Res. Atmos. https://doi.org/10.1002/2017JD028171

  6. Xavier, P., Rahmat, R., Cheong, W.K., Wallace, E.: Influence of Madden-Julian oscillation on Southeast Asia rainfall extremes: observations and predictability. Geophys. Res. Lett. 41, 4406–4412 (2014). https://doi.org/10.1002/2014GL060241

    Article  Google Scholar 

  7. Muhammad, F.R., Lubis, S.W., Setiawan, S.: Impacts of the Madden–Julian oscillation on precipitation extremes in Indonesia. Int. J. Climatol. 41, 1970–1984 (2021)

    Article  Google Scholar 

  8. Son, S.W., Lim, Y., Yoo, C., Hendon, H.H., Kim, J.: Stratospheric control of the Madden-Julian oscillation. J. Clim. (2017). https://doi.org/10.1175/JCLI-D-16-0620.1

    Article  Google Scholar 

  9. Collimore, C.C., Martin, D.W., Hitchman, M.H., Huesmann, A., Waliser, D.E.: On the relationship between the QBO and tropical deep convection. J. Clim. (2003). https://doi.org/10.1175/1520-0442(2003)016%3c2552:OTRBTQ%3e2.0.CO;2

    Article  Google Scholar 

  10. Nishimoto, E., Yoden, S.: Influence of the stratospheric quasi-biennial oscillation on the Madden-Julian oscillation during austral summer. J. Atmos. Sci. (2017). https://doi.org/10.1175/JAS-D-16-0205.1

    Article  Google Scholar 

  11. Fueglistaler, S., Dessler, A.E., Dunkerton, T.J., Folkins, I., Fu, Q., Mote, P.W.: Tropical tropopause layer. Rev. Geophys. (2009). https://doi.org/10.1029/2008RG000267

  12. Fukao, S., Hashiguchi, H., Yamamoto, M., Tsuda, T., Nakamura, T., Yamamoto, M.K., Sato, T., Hagio, M., Yabugaki, Y.: Equatorial atmosphere radar (EAR): system description and first results. Radio Sci. (2003). https://doi.org/10.1029/2002RS002767

    Article  Google Scholar 

  13. Fujiwara, M., Yamamoto, M.K., Hashiguchi, H., Horinouchi, T., Fukao, S.: Turbulence at the tropopause due to breaking Kelvin waves observed by the Equatorial Atmosphere Radar. Geophys. Res. Lett. (2003). https://doi.org/10.1029/2002GL016278

    Article  Google Scholar 

  14. Yamamoto, M.K.: High time resolution determination of the tropical tropopause by the Equatorial Atmosphere Radar. Geophys. Res. Lett. 30(21). https://doi.org/10.1029/2003gl018072

  15. Wheeler, M., Kiladis, G.N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. (1999)

    Google Scholar 

  16. Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F.: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8(1), 38–55 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Research, Community Service, and Innovation Program (P3MI), Bandung Institute of Technology (ITB) FY2020, Center of Atmospheric Science and Technology, National Institute of Aeronautics and Space (LAPAN), No. 42 FY2020, Research Priority Program of Ministry Research and Technology/National Agency of Research and Innovation (RISTEK-BRIN) No. 253/E1/PRN/2020, and Collaborative Research based on the MU Radar and Equatorial Atmosphere Radar No. 2020-RISH-MU/EAR-General-00014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlif Nabilatur Rosyidah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosyidah, A.N., Trilaksono, N.J., Noersomadi (2022). Variation of the Wind Profiles in the Tropical Tropopause Layer Associated with QBO-MJO Connection: An Equatorial Atmosphere Radar Observation. In: Yulihastin, E., Abadi, P., Sitompul, P., Harjupa, W. (eds) Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, 2021. Springer Proceedings in Physics, vol 275. Springer, Singapore. https://doi.org/10.1007/978-981-19-0308-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0308-3_55

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0307-6

  • Online ISBN: 978-981-19-0308-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics