Skip to main content

Evaluation of the Surface Wind Speed, Shear of Wind Speed, Shear of Wind Direction and Richardson Number at Soekarno-Hatta Airport Using Wyoming Radiosonde Data

  • Conference paper
  • First Online:
Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, 2021

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 275))

  • 346 Accesses

Abstract

Radiosonde data, which includes surface wind speed (SWS), temperature, and wind profiles used in this study are data at Soekarno-Hatta airport (Cengkareng) in Jakarta. The data period is January to June 2020 used to evaluate the shear of wind direction, shear of wind speed, and Richardson number as the atmospheric parameters that are significantly noticed in flight. In aviation, the Richardson number is used as a rough measure of air turbulence, which values below unity indicating significant turbulence. The surface wind speed can be evaluated directly from the observation data. In contrast, the shears of wind direction and wind speed are determined by calculating the differences in every meter in a vertical direction (from the surface to 10 km). The result shows that the minimum and maximum wind speeds are 0 and 20 ms−1, respectively. During this period, there was an event where the surface wind speed exceeded the threshold value of safe surface wind speed for flight (15 ms−1). Moreover, both the shears of wind speed and wind direction are far below the threshold value. Based on the analysis of turbulence using the Richardson number, the percentage of turbulence events is about 53%. This situation occurs under stable conditions characterized by the CAPE < 1000 J kg−1 (no-convective activity) and unstable conditions (CAPE > 1000 J kg−1). Furthermore, there was no significant difference in results related to Southern Oscillation Index (SOI) phase difference and Madden–Julian Oscillation (MJO) amplitude difference. The correlation test shows that there is no correlation between SOI and MJO amplitude to the aviation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boeing: Statistical summary of commercial jet airplane accidents, worldwide operations 1959–2016 (2017). www.boeing.com

  2. KNKT: Aircraft crashes in Indonesia and relationship with atmosphere condition (Original title: Penyebab kecelakaan penerbangan di Indonesia dan kaitannya dengan kondisi atmosfer) (2021). http://knkt/dephub/go.id/knkt/, FGD-LAPAN

    Google Scholar 

  3. International Civil Aviation Organization (ICAO): Annex 13 Aircraft Accident and Incident Investigation Tenth Edition. International Civil Aviation Organization, Montreal, International Society of Air Safety Investigators (ISASI), Positions on Air safety Investigation Issues, 3rd edn. 24 Agustus 2003 (2010)

    Google Scholar 

  4. International Civil Aviation Organization (ICAO): Guidelines for Investigator Training and Education, First Edition, Agustus 1999. International Civil Aviation Organization (ICAO) dan Commercial Aviation Safety (2011)

    Google Scholar 

  5. KNKT: Type of aircraft incidents in 2017. www.knkt.go.id (2020)

  6. Republika: Aircraft accidents/incidents for last 15 years (Original title: Kecelakaan pesawat 15 tahun terakhir). www.republika.co.id (2020)

  7. Narayana Muthia Sani dan Rahmat Gernowo: Turbulence analysis on the accident of the Etihad Airways EY-474 on May 4th, 2016 using Weather Research and Forecasting method (Original title: Analisis turbulensi pada pesawat Etihad Airways EY-474 tanggal 4 Mei 2016, dengan metode Weather Research and Forecasting). Youngster Phys J. ISSN: 2302-7371, 07 1, 34–39 (2018)

    Google Scholar 

  8. Gultepe, I., Pearson, G., Milbrandt, J.A., Hansen, B., Platnick, S., Taylor, P., et al.: The fog remote sensing and modeling (FRAM) field project. Bull. Am. Meteor. Soc. 90, 341–359 (2009)

    Article  Google Scholar 

  9. Gultepe, I., Sharman, R., Williams, P.D., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S.S., Gharabaghi, B., Feltz, W., Tamimi, M., Pu, Z., Storer, L.N., Kneringer, P., Weston, M.J., Chuang, H., Thobois, L., Dimri, A.P., Dietz, S.J., Gutember, B., França, M.V., Almeida, F.L.: Albuquerque Neto: a review of high impact weather for aviation meteorology. Pure Appl. Geophys., 176, 1869–1921 (2019)

    Google Scholar 

  10. Kumaran, Y., Nagarajan, S.: Aviation meteorology. Int. J. Latest Technol. Eng., Manag. Appl. Sci. VI(VIIIS), 90–94 (2017)

    Google Scholar 

  11. Page, C.: Understanding Aviation Meteorology and Weather Hazards with Ground-Based Observations, SN 978-3–642–12967-4, 161–173 (2010)

    Google Scholar 

  12. Smith, J.W.: Temperature distribution and the layer of minimum temperature. J. of Appl. Met. 2, 655–667 (1963)

    Article  Google Scholar 

  13. Chen J., Dai, A., Zhang, Y., Rasmussen, K.L.: Changes in convective available potential energy and convective inhibition under global warming. J. of Clim. 33(6), 2025–2050 (2020)

    Google Scholar 

  14. National Weather Service (NOAA): Pilot’s Guide for Aviation Weather. https://www.weather.gov/ (2020)

  15. List of accidents and incidents commercial aircraft. http://aviation-safety.net. Accessed Sept 2021

  16. Besson, C., Dolfi-Bouteyre, A., Canat, G., Cézard, N., Augère, B., Durécu, A., Lombard, L., Valla, M., Hallermeyer, A.: Doppler LIDAR Developments for Aeronautics. J. Aerosp. Lab. 12 (2016)

    Google Scholar 

  17. Luce, H., Nakamura, T., Yamamoto, M.K., Yamamoto, M., Fukao, S.: MU radar and lidar observations of clear-air turbulence underneath cirrus. Mon. Weather Rev. 138, 438–452 (2010)

    Article  Google Scholar 

  18. World Meteorological Organization: Aerodome reports and forecast. A Users Handbook, WMO No. 782 (2019)

    Google Scholar 

  19. Chun, H., Kim, J., Lee, D., Kim, S., Strahan, M., Pettegrew, B., et al.: Research collaborations for better predictions of aviation weather hazards. Bull. Am. Meteorol. Soc. 98, ES103–ES107 (2017). https://doi.org/10.1175/BAMS-D-17-0010.1

  20. Benjamin, S.G., Jamison, B.D., Moninger, W.R., Sahm, S.R., Schwartz, B.E., Schlatter, T.W.: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Weather Rev. 138, 1319–1343 (2010)

    Article  Google Scholar 

  21. Monkam, D.: Convective available potential energy (CAPE) in Northern Africa and tropical Atlantic and study of its connections with rainfall in Central and West Africa during Summer 1985. Atmos. Res. 62(1–2), 125–147 (2002)

    Article  Google Scholar 

  22. Adams, D.K., Souza, E.P.: CAPE and convective events in the Southwest during the North American monsoon. Mon. Wea. Rev. 137, 83–98 (2009)

    Article  Google Scholar 

  23. Williams, E.: Comments on “thunderstorms above frontal surfaces in environments without positive CAPE. Part I: a climatology”. Mon. Wea. Rev. 119, 2511–2513 (1991)

    Google Scholar 

  24. Williams, E., Renno, N.: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev. 121, 21–36 (1993)

    Article  Google Scholar 

  25. Adams, D.K., Rennó, N.O.: Remarks on Arakawa–Schubert’s quasi-equilibrium theory. J. Atmos. Sci. 60, 178–181 (2003)

    Article  Google Scholar 

  26. McBride, J., Frank, W.: Relationships between stability and monsoon convection. J. Atmos. Sci. 56, 24–36 (1999)

    Article  Google Scholar 

  27. Yano, J., Chaboureau, J., Guichard, F.: A generalization of CAPE into potential-energy convertibility. Quart. J. Roy. Meteor. Soc. 861–875 (2005)

    Google Scholar 

  28. Moncrieff, M.W., Miller, M.J.: The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 120, 432, 373–394 (1976)

    Google Scholar 

Download references

Acknowledgements

Thank LAPAN for funding this research and appreciation to the research group for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally as the main contributors to this work.

Corresponding author

Correspondence to Ina Juaeni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juaeni, I., Saufina, E., Pratama, R., Fatria, D., Harjupa, W., Fathrio, I. (2022). Evaluation of the Surface Wind Speed, Shear of Wind Speed, Shear of Wind Direction and Richardson Number at Soekarno-Hatta Airport Using Wyoming Radiosonde Data. In: Yulihastin, E., Abadi, P., Sitompul, P., Harjupa, W. (eds) Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, 2021. Springer Proceedings in Physics, vol 275. Springer, Singapore. https://doi.org/10.1007/978-981-19-0308-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0308-3_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0307-6

  • Online ISBN: 978-981-19-0308-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics