Skip to main content

Impact of Climate Change on Precipitation Over India Using CMIP-6 Climate Models

  • Conference paper
  • First Online:
Innovative Trends in Hydrological and Environmental Systems

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 234))

Abstract

Due to various changes in global climatic conditions and greenhouse gas emissions, it is critical to comprehend variations in precipitation patterns at higher spatial and temporal scales. To assess the impact of climate change on precipitation across India, the current study uses simulations from six Global climate models (GCMs) (ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, INM-CM4-8, and KACE-1-0-G) for the four SSP emission scenarios for the 1980–2014 historical period and 2022–2056, 2057–2091 future projections. The Indian Meteorological Department (IMD), Pune, provided observed data with a high spatial resolution of (0.25° × 0.25°) on a daily time scale. For downscaling the daily precipitation over India, a multiplicative change factor technique is used. The current study examines the change in daily average rainfall and daily maximum rainfall for the four climate emission scenarios (SSP126, SSP245, SSP370 and SSP585) with two distinct time scales (2022–2056 and 2057–2091) over India using six GCMs from the CMIP-6 simulations. Many portions of India saw an increase in daily average rainfall of 0–50 mm and a shift in maximum daily rainfall of 500–1000 mm as a result of the four climate emission scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, J., Yuan, D., Zhang, L., Zou, X., & Song, X. (2016). Comparison of three statistical downscaling methods and ensemble downscaling method based on Bayesian model averaging in upper Hanjiang River Basin, China. Advance in Meteorology, 2016. https://doi.org/10.1155/2016/7463963

  2. Devak, M., Dhanya, C. T., & Gosain, A. K. (2015). Dynamic coupling of support vector machine and K-nearest Neighbour for downscaling daily rainfall. Journal of Hydrology, 525, 286–301. https://doi.org/10.1016/j.jhydrol.2015.03.051

    Article  Google Scholar 

  3. Duhan, D., & Pandey, A. (2015). Statistical downscaling of temperature using three techniques in the Tons River basin in Central India. Theoretical and Applied Climatology, 121, 605–622. https://doi.org/10.1007/s00704-014-1253-5

    Article  Google Scholar 

  4. Vallam, P., & Qin, X. S. (2018). Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes. Theoretical and Applied Climatology, 134, 669–688. https://doi.org/10.1007/s00704-017-2299-y

    Article  Google Scholar 

  5. Raje, D., & Mujumdar, P. P. (2011). A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrological Processes, 25, 3575–3589. https://doi.org/10.1002/hyp.8083

    Article  Google Scholar 

  6. Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J., & Wilks, D. S. (1998). Statistical downscaling of general circulation model output: A comparison of methods. Water Resources Research, 34, 2995–3008. https://doi.org/10.1029/98WR02577

    Article  Google Scholar 

  7. Gutiérrez, J. M., San-Martín, D., Brands, S., Manzanas, R., & Herrera, S. (2013). Reassessing statistical downscaling techniques for their robust application under climate change conditions. Journal of Climate, 26, 171–188. https://doi.org/10.1175/JCLI-D-11-00687.1

    Article  Google Scholar 

  8. O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

    Article  Google Scholar 

  9. Hossain, M., Hales, R., & Sarker, T. (2017). Pathways to a sustainable economy: Bridging the gap between Paris climate change commitments and net zero emissions. In Pathways to a Sustainable Economy Bridge Gap between Paris Climate Change Commitments Net Zero Emissions, pp. 1–225. https://doi.org/10.1007/978-3-319-67702-6

  10. Ghosh, S., & Mujumdar, P. P. (2006). Future rainfall scenario over Orissa with GCM projections by statistical downscaling. Current Science, 90, 396–404.

    Google Scholar 

  11. Chithra, N. R., Thampi, S. G., Surapaneni, S., Nannapaneni, R., Reddy, A. A. K., & Kumar, J. D. (2015). Prediction of the likely impact of climate change on monthly mean maximum and minimum temperature in the Chaliyar river basin, India, using ANN-based models. Theoretical and Applied Climatology, 121, 581–590. https://doi.org/10.1007/s00704-014-1257-1

    Article  Google Scholar 

  12. Manatsa, D., Chingombe, W., & Matarira, C. H. (2008). The impact of the positive Indian Ocean dipole on Zimbabwe droughts Tropical climate is understood to be dominated by. International Journal of Climatology, 2029, 2011–2029. https://doi.org/10.1002/joc

    Article  Google Scholar 

  13. Duhan, D., & Pandey, A. (2015). Statistical downscaling of temperature using three techniques in the Tons River basin in Central India. Theoretical and Applied Climatology, 121(3–4), 605–622. https://doi.org/10.1007/s00704-014-1253-5

    Article  Google Scholar 

  14. Goly, A., Teegavarapu, R. S. V., & Mondal, A. (2014). Development and evaluation of statistical downscaling models for monthly precipitation. Earth Interactions, 18, 1–28. https://doi.org/10.1175/EI-D-14-0024.1

    Article  Google Scholar 

  15. Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM - A decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software, 17, 145–157. https://doi.org/10.1016/s1364-8152(01)00060-3

    Article  Google Scholar 

  16. Coulibaly, P., Dibike, Y. B., & Anctil, F. (2005). Downscaling precipitation and temperature with temporal neural networks. Journal of Hydrometeorology, 6, 483–496. https://doi.org/10.1175/JHM409.1

    Article  Google Scholar 

  17. Mahmood, R., & Jia, S. (2017). An extended linear scaling method for downscaling temperature and its implication in the Jhelum River basin, Pakistan, and India, using CMIP5 GCMs. Theoretical and Applied Climatology, 130, 725–734. https://doi.org/10.1007/s00704-016-1918-3

    Article  Google Scholar 

  18. Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., & Matonse, A. H. (2011). Examination of change factor methodologies for climate change impact assessment. Water Resources Research, 47, 1–10. https://doi.org/10.1029/2010WR009104

    Article  Google Scholar 

  19. Srinivasa Raju, K., & Nagesh Kumar, D. (2015). Ranking general circulation models for India using TOPSIS. Journal of Water and Climate Change, 6, 288–299. https://doi.org/10.2166/wcc.2014.074

    Article  Google Scholar 

  20. Perkins, S. E., Pitman, A. J., Holbrook, N. J., & McAneney, J. (2007). Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. Journal of Climate, 20, 4356–4376. https://doi.org/10.1175/JCLI4253.1

    Article  Google Scholar 

  21. Akhtar, M., Ahmad, N., & Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355, 148–163. https://doi.org/10.1016/j.jhydrol.2008.03.015

    Article  Google Scholar 

  22. Hay, L. E., Wilby, R. L., & Leavesley, G. H. (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resources Association, 36, 387–397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Science and Engineering Research Board, Government of India through the Project No. SRG/2019/001424.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinod, D., Agilan, V. (2022). Impact of Climate Change on Precipitation Over India Using CMIP-6 Climate Models. In: Dikshit, A.K., Narasimhan, B., Kumar, B., Patel, A.K. (eds) Innovative Trends in Hydrological and Environmental Systems. Lecture Notes in Civil Engineering, vol 234. Springer, Singapore. https://doi.org/10.1007/978-981-19-0304-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0304-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0303-8

  • Online ISBN: 978-981-19-0304-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics