Skip to main content

Using Convolutional Neural Networks for Fault Analysis and Alleviation in Accelerator Systems

  • Conference paper
  • First Online:
Proceedings of 2nd International Conference on Mathematical Modeling and Computational Science

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1422))

  • 201 Accesses

Abstract

Today, Neural Networks are the basis of breakthroughs in virtually every technical domain. Their application to accelerators has recently resulted in better performance and efficiency in these systems. At the same time, the increasing hardware failures due to the latest semiconductor technology need to be addressed. Since accelerator systems are often used to back time-critical applications such as self-driving cars or medical diagnosis applications, these hardware failures must be eliminated. Our research evaluates these failures from a systemic point of view. Based on our results, we find critical results for the system reliability enhancement, and we further put forth an efficient method to avoid these failures with minimal hardware overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gatys, L. A., A. S. Ecker, and M. Bethge. 2016. Image style transfer using convolutional neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  2. Collobert, R., and J. Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, ser. ICML ’08. New York, NY, USA: ACM, pp. 160–167. [Online]. Available: https://doi.org/10.1145/1390156.1390177.

  3. Chen, C., A. Seff, A. Kornhauser, and J. Xiao. 2015. Deepdriving: Learning affordance for direct perception in autonomous driving. In The IEEE International Conference on Computer Vision (ICCV).

    Google Scholar 

  4. Chen, T., Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. 2014. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. In ACM Sigplan Notices, vol. 49, no. 4. ACM, pp. 269–284.

    Google Scholar 

  5. Chen, Y., T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun et al. 2014. Dadiannao: A machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, pp. 609–622.

    Google Scholar 

  6. Chen, Y.-H., J. Emer, and V. Sze. 2016. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. In ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press, pp. 367–379.

    Google Scholar 

  7. Zhang, C., P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. 2015. Optimizing fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. New York, NY, USA: ACM, pp. 161–170. [Online]. Available: https://doi.org/10.1145/2684746.2689060.

  8. Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. 2016. Eie: Efficient inference engine on compressed deep neural network. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 243–254.

    Google Scholar 

  9. Protzel, P.W., D.L. Palumbo, and M.K. Arras. 1993. Performance and fault tolerance of neural networks for optimization. IEEE Transactions on Neural Networks 4 (4): 600–614.

    Article  Google Scholar 

  10. Reagen, B., U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland, D. Brooks, and G.-Y. Wei. 2018. Ares: A Framework for Quantifying the Resilience of Deep Neural Networks, pp. 1–6.

    Google Scholar 

  11. Kausar, F., and P. Aishwarya. 2016. Artificial neural network: Framework for fault tolerance and future. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), March 2016, pp. 648–651.

    Google Scholar 

  12. Li, G., K. Pattabiraman, and N. Debardeleben. 2018. Tensorfi: A configurable fault injector for tensorflow applications. In 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW).

    Google Scholar 

  13. Li, G., S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W. Keckler. 2017. Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications, pp. 1–12.

    Google Scholar 

  14. SalamiB., , O. Unsal, and A. Cristal. 2018. On the Resilience of RTL NN Accelerators: Fault Characterization and Mitigation. [Online]. Available: http://arxiv.org/abs/1806.09679.

  15. Li, S., J. Niu, and Z. Li. 2021. Novelty detection of cable-stayed bridges based on cable force correlation exploration using spatiotemporal graph convolutional networks. Structural Health Monitoring, p. 1475921720988666.

    Google Scholar 

  16. Shi, C., Y. Ren, H. Tang, and L. R. Mupfukirei. 2021. A fault diagnosis method for an electro-hydraulic directional valve based on intrinsic mode functions and weighted densely connected convolutional networks. Measurement Science and Technology, 32(8), 084015.

    Google Scholar 

  17. Xilinx Inc. 2018. Vivado design suite 7 series fpga and zynq-7000 soc libraries guide. http://www.xilinx.com/support/documentation/swmanuals/xilinx20174/ug953-vivado-7series-libraries.pdf, UG953(v2017.4).

  18. Xilinx Inc. 2016. Axi hwicap v3.0 logicore ip product guide. http://www.xilinx.com/support/documentation/ipdocumentation/axihwicap/v3 0/pg134-axi-hwicap.pdf, PG134.

  19. Xilinx Inc.. 2018. 7 series fpgas configuration user guide. http://www.xilinx.com/support/documentation/user guides/ug470 7Series Config.pdf, UG470 (v1.13.1).

  20. Redmon, J., and A. Farhadi. 2016. Yolo9000: Better, Faster, Stronger. arXiv preprint arXiv:1612.08242.

  21. He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  22. Sak, H., A. Senior, and F. Beaufays. 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Fifteenth Annual Conference of the International Speech Communication Association.

    Google Scholar 

  23. Radford, A., L. Metz, and S. Chintala. 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv preprint arXiv:1511.06434.

  24. Ebrahimi, M., A. Mohammadi, A. Ejlali, and S.G. Miremadi. 2014. A fast, flexible, and easy-to-develop FPGA-based fault injection technique. Microelectronics Reliability 54 (5): 1000–1008.

    Article  Google Scholar 

  25. Lopez-Ongil, C., L. Entrena, M. Garcia-Valderas, M. Portela, and F. Munoz. 2007. A unified environment for fault injection at any design level based on emulation. IEEE Transactions on Nuclear Science 54 (4): 946–950.

    Article  Google Scholar 

  26. Harward, N. A., M. R. Gardiner, L. W. Hsiao, and M. J. Wirthlin. 2015. Estimating soft processor soft error sensitivity through fault injection. In IEEE International Symposium on Field-programmable Custom Computing Machines.

    Google Scholar 

  27. Tarrillo J., J. Tonfat, L. Tambara, F. L. Kastensmidt, and R. Reis. 2015. Multiple fault injection platform for sram-based fpga based on ground level radiation experiments. In Test Symposium (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Deepak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sraw, J.S., Deepak, M.C. (2022). Using Convolutional Neural Networks for Fault Analysis and Alleviation in Accelerator Systems. In: Peng, SL., Lin, CK., Pal, S. (eds) Proceedings of 2nd International Conference on Mathematical Modeling and Computational Science. Advances in Intelligent Systems and Computing, vol 1422. Springer, Singapore. https://doi.org/10.1007/978-981-19-0182-9_30

Download citation

Publish with us

Policies and ethics