Skip to main content

Fractional Reaction–Diffusion Model: An Efficient Computational Technique for Nonlinear Time-Fractional Schnakenberg Model

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation

Abstract

In this article, the q-homotopy analysis transform method (q-HATM) is committed to finding the solutions and analyzing the gathered results for the nonlinear fractional-order reaction–diffusion systems such as the fractional Schnakenberg model. These models are well known for the modelling of morphogen in developmental biology. The efficiency and reliability of the q-HATM, which is the proper mixture of Laplace transform and q-HAM, always keep it in a better position in comparison with many other analytical techniques. By choosing a precise value for the auxiliary parameter \(\hslash\), one can modify the region of convergence of the series solution. In the current framework, the investigation of the Schnakenberg models is implemented with exciting results. The acquired results guarantee that the considered method is very satisfying and scrutinizes the complex nonlinear issues that arise in the arena of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland Mathematics Studies

    Google Scholar 

  2. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego, CA

    MATH  Google Scholar 

  3. Lazarevic MP (2006) Finite time stability analysis of PDα fractional control of robotic time-delay systems. Mech Res Commun 33(2):269–279

    Article  MathSciNet  MATH  Google Scholar 

  4. Drapaca CS, Sivaloganathan S (2012) A fractional model of continuum mechanics. J Elast 107:105–123

    Google Scholar 

  5. Lohmann AW, Mendlovic D, Zalevsky Z (1998) IV: fractional transformations in optics. Prog Opt 38:263–342

    Google Scholar 

  6. Veeresha P, Prakasha DG (2020) An efficient technique for two-dimensional fractional order biological population model. Int J Model Simul Sci Comput 11(1)

    Google Scholar 

  7. Prakasha DG, Veeresha P, Singh J (2019) Fractional approach for equation describing the water transport in unsaturated porous media with Mittag-Leffler kernel. Front Phys 7(193)

    Google Scholar 

  8. Akinyemi L et al (2021) Novel approach to the analysis of fifth-order weakly nonlocal fractional Schrodinger equation with Caputo derivative. Results Phys 31

    Google Scholar 

  9. Gao W, Veeresha P, Prakasha DG, Senel B, Baskonus HM (2020) Iterative method applied to the fractional nonlinear systems arising in thermo elasticity with Mittag-Leffler kernel. Fractals 28(8):2040040

    Article  MATH  Google Scholar 

  10. Veeresha P, Prakasha DG, Hammouch Z (2020) An efficient approach for the model of thrombin receptor activation mechanism with Mittag-Leffler function. Nonlinear Anal: Probl Appl Comput Methods 44–60

    Google Scholar 

  11. Prakasha DG, Malagi NS, Veeresha P (2020) New approach for fractional Schrödinger-Boussinesq equations with Mittag-Leffler kernel. Math Meth Appl Sci 32(12):1519–1540

    MATH  Google Scholar 

  12. Prakasha DG, Malagi NS, Veeresha P, Prasannakumara BC (2020) An efficient computational technique for time-fractional Kaup-Kupershmidt equation. Numer Meth Partial Diff Eq 37(2):1299–1316

    Article  MathSciNet  Google Scholar 

  13. Bulut H, Kumar D, Singh J, Swroop R, Baskonus HM (2018) Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells. Math Nat Sci 2(1):33–43

    Article  Google Scholar 

  14. Safare KM, Betageri VS, Prakasha DG, Veeresha P, Kumar S (2021) A mathematical analysis of ongoing outbreak COVID-19 in India through nonsingular derivative. Numer Meth Partial Diff Eq 37(2):1282–1298

    Article  MathSciNet  Google Scholar 

  15. Malagi NS, Veeresha P, Prasannakumara BC, Prasanna GD, Prakasha DG (2021) A new computational technique for the analytic treatment of time-fractional Emden-Fowler equations. Math Comput Simul 190:362–376

    Article  MathSciNet  MATH  Google Scholar 

  16. He J-H (1999) Variational iteration method—a kind of nonlinear analytical technique: some examples. Int J NonLinear Mech 34(4):699–708

    Article  MATH  Google Scholar 

  17. Wazawz AM (2019) A variety of optical solitons for nonlinear schrodinger equation with detuning term by the variational iteration method. Optik 196:163–169

    Google Scholar 

  18. Batiha B, Noorani MSM, Hashim I (2007) Applications of variational iteration method to heat and wave-like equations. Phys Lett A 369:55–61

    Article  MATH  Google Scholar 

  19. El-Tawil MA, Bahnasawi AA, Abdel-Naby A (2004) Solving Riccati differential equation using Adomian’s decomposition method. Appl Math Comput 157:503–514

    MathSciNet  MATH  Google Scholar 

  20. Liao SJ (2003) Beyond perturbation: introduction to homotopy analysis method. Chapman and Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  21. Liao SJ (1995) An approximate solution technique not depending on small parameters: a special example. Int J Nonlinear Mech 30(3):371–380

    Article  MathSciNet  MATH  Google Scholar 

  22. Liao SJ (2012) Homotopy analysis method in nonlinear differential equations. Springer and Higher Education Press, Berlin and Beijing

    Book  MATH  Google Scholar 

  23. El-Tawil MA, Huseen SN (2012) The q-Homotopy analysis method (q- HAM). Int J Appl Math Mech 8:51–75

    Google Scholar 

  24. El-Tawil MA, Huseen SN (2013) On convergence of the q-homotopy analysis method. Int J Contemp Math Sci 8:481–497

    Article  MathSciNet  Google Scholar 

  25. Wazawz AM (2010) The combined Laplace transform–adomian decomposition method for handling nonlinear Volterra integro–differential equations. Appl Math Comput 216(4):1304–1309

    MathSciNet  MATH  Google Scholar 

  26. Jafari H, Khalique CM, Nazari M (2010) Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion–wave equations. Appl Math Lett 24(11):1799–1805

    Article  MathSciNet  MATH  Google Scholar 

  27. Khan M, Gondal MA, Hussain I, Vanani SK (2012) A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on semi infinite domain. Math Comput Model 55:1143–1150

    Article  MathSciNet  MATH  Google Scholar 

  28. Khan M (2014) A novel solution technique for two dimensional Burger’s equation. Alex Eng J 53:485–490

    Article  Google Scholar 

  29. Khuri SA (2001) A Laplace decomposition algorithm applied to a class of nonlinear differential equations. J Appl Math 1:141–155

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumar D, Singh J, Kumar S (2014) Numerical computation of nonlinear fractional Zakharov-Kuznetsov equation arising in ion-acoustic waves. J Egyptian Math Soc 22:373–378

    Article  MathSciNet  MATH  Google Scholar 

  31. Veeresha P, Prakasha DG, Singh J, Kumar D, Baleanu D (2020) Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory. Chinese J Phys 68:65–78

    Article  MathSciNet  Google Scholar 

  32. Singh J, Kumar D, Swroop R (2016) Numerical solution of time- and space-fractional coupled Burger’s equations via homotopy algorithm. Alex Eng J 55(2):1753–1763

    Article  Google Scholar 

  33. Turing AM (1990) The chemical basis of morphogenesis. Bull Math Biol 52:153–197

    Article  Google Scholar 

  34. Rida SZ, El-Sayed AMA, Arafa AAM (2010) Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model. J Stat Phys 140:797–811

    Article  MathSciNet  MATH  Google Scholar 

  35. El-Sayed AMA, Rida SZ, Arafa AAM (2010) On the solutions of the generalized reaction-diffusion model for bacteria growth. Acta Appl Math 110:1501–1511

    Article  MathSciNet  MATH  Google Scholar 

  36. Rida SZ, El-Sayed AMA, Arafa AAM (2010) On the solutions of time-fractional reaction-diffusion equations. Commun Nonlinear Sci Numer Simul 15:3847–3854

    Article  MathSciNet  MATH  Google Scholar 

  37. Veeresha P, Gao W, Prakasha DG, Malagi NS, Ilhan E, Baskonus HM (2021) New dynamical behaviour of the coronavirus (COVID-19) infection system with nonlocal operator from reservoirs to people. Inf Sci Lett 10(2):205–212

    Article  Google Scholar 

  38. Magin RL (2004) Fractional calculus in bioengineering. Crit Rev Biomed Eng 32(1):1–104

    Article  Google Scholar 

  39. Magin RL (2004) Fractional calculus in bioengineering-Part 2. Crit Rev Biomed Eng 32(2):105–193

    Article  Google Scholar 

  40. Magin RL (2004) Fractional calculus in bioengineering-Part 3. Crit Rev Biomed Eng 32(3/4):194–377

    Google Scholar 

  41. Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behavior. J Theor Biol 81:389–400

    Article  MathSciNet  Google Scholar 

  42. Goodwin BC, Trainor LEH (1985) Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J Theor Biol 117:79–106

    Article  Google Scholar 

  43. Teleman AA, Strigini M, Cohen SM (2001) Shaping morphogen gradients. Cell 105:559–562

    Article  Google Scholar 

  44. Hairer E, Wanner G (1999) Stiff differential equations solved by Radau methods. J Comput Appl Math 111:93–111

    Article  MathSciNet  MATH  Google Scholar 

  45. Gurdon JB, Bourillot PY (2001) Morphogen gradient interpretation. Nature 413:797–803

    Article  Google Scholar 

  46. Lander A, Nie Q, Wan F (2002) Domorphogen gradients arise by diffusion. Dev Cell 2(6):785–796

    Article  Google Scholar 

  47. Miller KS, Ross B (1993) An introduction to fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  48. Singh J et al (2021) An efficient numerical approach for fractional multi-dimensional diffusion equations with exponential memory. Numer Methods Part Differ Equ 37(2):1631–1651

    Article  Google Scholar 

  49. Baishya C, Veeresha P (2021) Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel. Proc R Soc A 477(2253)

    Google Scholar 

  50. Okposo NI, Veeresha P, Okposo EN (2021) Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons. Chinese J Phys

    Google Scholar 

  51. Goswami A, Singh J, Kumar D (2019) Sushila, an efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Phys A 524:563–575

    Article  MathSciNet  MATH  Google Scholar 

  52. Ilhan E, Veeresha P, Baskonus HM (2021) Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method. Chaos, Solitons and Fractals 152

    Google Scholar 

  53. Veeresha P, Prakasha DG, Kumar D (2020) Fractional SIR epidemic model of childhood disease with Mittag-Leffler memory. Fract Calc Med Health Sci 229–248

    Google Scholar 

  54. Singh J, Ganbari B, Kumar D, Baleanu D (2021) Analysis of fractional model of guava for biological pest control with memory effect. J Adv Res 32:99–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Prakasha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malagi, N.S., Prakasha, D.G., Veeresha, P., Prasannakumara, B.C. (2023). Fractional Reaction–Diffusion Model: An Efficient Computational Technique for Nonlinear Time-Fractional Schnakenberg Model. In: Singh, J., Anastassiou, G.A., Baleanu, D., Cattani, C., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation. Lecture Notes in Networks and Systems, vol 415. Springer, Singapore. https://doi.org/10.1007/978-981-19-0179-9_26

Download citation

Publish with us

Policies and ethics