Skip to main content

Current Status of Augmented Reality in the Spine

  • Chapter
  • First Online:
Technical Advances in Minimally Invasive Spine Surgery

Abstract

Modern surgery still relies greatly on the knowledge and manual skills of the individual surgeon. Years of training are needed to hone the skills necessary for safe and effective patient management. In the evaluation of a patient, the clinical information is supplemented by radiological imaging such as CT and MRI. The experienced surgeon plans the surgery aided by the aggregated preoperative information. Despite all preparations, surgery still involves the manipulation of complex and dynamic 3D structures, and human errors cannot be eliminated. Surgical navigation systems can improve surgical precision through the alignment of 3D radiological information to the patient in the operating room (OR). Although navigation systems display imaging data in standardized views such as axial, sagittal, and coronal, none of them truly represents the perspective of the surgeon. Navigation systems adopting augmented reality (AR) differ from other systems by providing the surgeon with visual information matching the surgeon’s perspective. The possibility to superimpose virtual data on the surgeon’s view of the surgical field offers a new dimension to surgical navigation, and great technological strides have brought AR into the OR. In this chapter, a summary of the state-of-the-art AR navigation solutions for spine surgery will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Odgers CJ, Vaccaro AR, Pollack ME, Cotler JMJCSS. Accuracy of pedicle screw placement with the assistance of lateral plain radiography. J Spinal Disord. 1996;9(4):334–8.

    Article  PubMed  Google Scholar 

  2. Whitecloud TS, Skalley TC, Cook SD, Morgan EL. Roentgenographic measurement of pedicle screw penetration. Clin Orthop Relat Res. 1989;245:57–68.

    Article  Google Scholar 

  3. Weinstein JN, Spratt KF, Spengler D, Brick C, Reid SJS. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine (Phila Pa 1976). 1988;13(9):1012–8.

    Article  CAS  Google Scholar 

  4. Suk S-I, Kim J-H, Kim S-S, Lim D-J. Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J. 2012;21(1):13–22.

    Article  PubMed  Google Scholar 

  5. Hartl R, Lam KS, Wang J, Korge A, Kandziora F, Audige L. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79(1):162–72.

    Article  PubMed  Google Scholar 

  6. Bourgeois AC, Faulkner AR, Pasciak AS, Bradley YCJAotm. The evolution of image-guided lumbosacral spine surgery. Ann Transl Med. 2015;3(5)

    Google Scholar 

  7. Cordemans V, Kaminski L, Banse X, Francq BG, Cartiaux O. Accuracy of a new intraoperative cone beam CT imaging technique (Artis zeego II) compared to postoperative CT scan for assessment of pedicle screws placement and breaches detection. Eur Spine J. 2017;26(11):2906–16.

    Article  PubMed  Google Scholar 

  8. Hussain I, Cosar M, Kirnaz S, Schmidt FA, Wipplinger C, Wong T, et al. Evolving navigation, robotics, and augmented reality in minimally invasive spine surgery. Global Spine J. 2020;10(2 Suppl):22S–33S.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burström G, Nachabe R, Homan R, Hoppenbrouwers J, Holthuizen R, Persson O, et al. Frameless patient tracking with adhesive optical skin markers for augmented reality surgical navigation in spine surgery. Spine (Phila Pa 1976). 2020;

    Google Scholar 

  10. Schmidt OI, Strasser S, Kaufmann V, Strasser E, Gahr RH. Role of early minimal-invasive spine fixation in acute thoracic and lumbar spine trauma. Indian J Orthop. 2007;41(4):374.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Elmi-Terander A, Skulason H, Söderman M, Racadio J, Homan R, Babic D, et al. Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: a spine cadaveric feasibility and accuracy study. Spine (Phila Pa 1976). 2016;41(21):E1303–E11.

    Google Scholar 

  12. Hoppe HDS, Raczkowsky J, Wörn H, Moctezuma JL. Intraoperative visualization of surgical planning data using video projectors. Stud Health Technol Inform. 2001;81:206–8.

    CAS  PubMed  Google Scholar 

  13. Hoppe HDS, Kübler C, Raczkowsky J, Wörn H. A new, accurate and easy to implement camera and video projector model. Stud Health Technol Inform. 2002;85:204–6.

    PubMed  Google Scholar 

  14. Däuber SHH, Krempien R, Hassfeld S, Brief J, Wörn H. Intraoperative guidance of pre-planned bone deformations with a surface scanning system. Stud Health Technol Inform. 2002;85:110–5.

    PubMed  Google Scholar 

  15. Eggers GST, Hoppe H, Kahrs L, Ghanai S, Raczkowsky J, Dillman R, Wörn H, Hassfeld S, Marmulla R. Intraoperative augmented reality: the surgeons view. Stud Health Technol Inform. 2005;111:123–5.

    PubMed  Google Scholar 

  16. Kahrs LHH, Eggers G, Raczkowsky J, Marmulla R, Wörn H. Visualization of surgical 3D information with projector-based augmented reality. Stud Health Technol Inform. 2005;111:243–6.

    PubMed  Google Scholar 

  17. Marmulla R, Hoppe H, Muhling J, Eggers G. An augmented reality system for image-guided surgery. Int J Oral Maxillofac Surg. 2005;34(6):594–6.

    Article  CAS  PubMed  Google Scholar 

  18. Wörn H, Aschke M, Kahrs LA. New augmented reality and robotic based methods for head-surgery. Int J Med Robot Comput Assist Surg. 2005;01(03)

    Google Scholar 

  19. Liang JT, Doke T, Onogi S, Ohashi S, Ohnishi I, Sakuma I, et al. A fluorolaser navigation system to guide linear surgical tool insertion. Int J Comput Assist Radiol Surg. 2012;7(6):931–9.

    Article  PubMed  Google Scholar 

  20. McKnight RR, Pean CA, Buck JS, Hwang JS, Hsu JR, Pierrie SN. Virtual reality and augmented reality-translating surgical training into surgical technique. Curr Rev Musculoskelet Med. 2020;

    Google Scholar 

  21. Vazan M, Gempt J, Meyer B, Buchmann N, Ryang YM. Minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: a technical description and review of the literature. Acta Neurochir. 2017;159(6):1137–46.

    Article  PubMed  Google Scholar 

  22. Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine. 2016;24(3):416–27.

    Article  PubMed  Google Scholar 

  23. Lu VM, Kerezoudis P, Gilder HE, McCutcheon BA, Phan K, Bydon M. Minimally invasive surgery versus open surgery spinal fusion for spondylolisthesis: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2017;42(3):E177–E85.

    Article  Google Scholar 

  24. Wu MH, Dubey NK, Li YY, Lee CY, Cheng CC, Shi CS, et al. Comparison of minimally invasive spine surgery using intraoperative computed tomography integrated navigation, fluoroscopy, and conventional open surgery for lumbar spondylolisthesis: a prospective registry-based cohort study. Spine J. 2017;

    Google Scholar 

  25. Phillips FM, Cheng I, Rampersaud YR, Akbarnia BA, Pimenta L, Rodgers WB, et al. Breaking through the “glass ceiling” of minimally invasive spine surgery. Spine (Phila Pa 1976). 2016;41(Suppl 8):S39–43.

    Google Scholar 

  26. Park P, Foley KT, Cowan JA, Marca FL. Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results. Surg Neurol Int. 2010;1:44.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim TT, Johnson JP, Pashman R, Drazin D. Minimally invasive spinal surgery with intraoperative image-guided navigation. Biomed Res Int. 2016;2016:5716235.

    PubMed  PubMed Central  Google Scholar 

  28. Edström E, Burström G, Nachabe R, Gerdhem P, Elmi-Terander A. A novel augmented-reality-based surgical navigation system for spine surgery in a hybrid operating room: design, workflow, and clinical applications. Oper Neurosurg (Hagerstown). 2020;18(5):496–502.

    Google Scholar 

  29. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21(2):247–55.

    Article  PubMed  Google Scholar 

  30. Schizas C, Michel J, Kosmopoulos V, Theumann N. Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization. Eur Spine J. 2007;16(5):613–7.

    Article  PubMed  Google Scholar 

  31. Kim MC, Chung HT, Cho JL, Kim DJ, Chung NS. Factors affecting the accurate placement of percutaneous pedicle screws during minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 2011;20(10):1635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bourgeois AC, Faulkner AR, Bradley YC, Pasciak AS, Barlow PB, Gash JR, et al. Improved accuracy of minimally invasive transpedicular screw placement in the lumbar spine with 3-dimensional stereotactic image guidance: a comparative meta-analysis. J Spinal Disord Tech. 2015;28(9):324–9.

    Article  PubMed  Google Scholar 

  33. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976). 2007;32(3):E111–20.

    Article  Google Scholar 

  34. Santos ER, Sembrano JN, Yson SC, Polly DW Jr. Comparison of open and percutaneous lumbar pedicle screw revision rate using 3-D image guidance and intraoperative CT. Orthopedics. 2015;38(2):e129–34.

    Article  PubMed  Google Scholar 

  35. Del Castillo-Calcáneo J, Navarro-Ramirez R, Gimenez-Gigon M, Adjei J, Damolla A, Nakhla J, et al. Principles and fundamentals of minimally invasive spine surgery. World Neurosurg. 2018;119:465–71.

    Article  Google Scholar 

  36. International Commission Radiological Protection: Statement on tissue reactions/early and late effects of radiation in normal tissues and organs - threshold doses for tissue reaction in a radiation protection context. ICRP Publication 118. 2012.

    Google Scholar 

  37. International Commission Radiological Protection: Occupational intakes of radionuclides: Part 1. ICRP Publication 130. 2015.

    Google Scholar 

  38. Gausden EB, Christ AB, Zeldin R, Lane JM, McCarthy MM. Tracking cumulative radiation exposure in orthopaedic surgeons and residents: what dose are we getting? J Bone Joint Surg Am. 2017;99(15):1324–9.

    Article  PubMed  Google Scholar 

  39. Fomekong E, Safi SE, Raftopoulos C. Spine navigation based on 3-dimensional robotic fluoroscopy for accurate percutaneous pedicle screw placement: a prospective study of 66 consecutive cases. World Neurosurg. 2017;108:76–83.

    Article  PubMed  Google Scholar 

  40. Fichtner J, Hofmann N, Rienmuller A, Buchmann N, Gempt J, Kirschke JS, et al. Revision rate of misplaced pedicle screws of the thoracolumbar spine-comparison of three-dimensional fluoroscopy navigation with freehand placement: a systematic analysis and review of the literature. World Neurosurg. 2018;109:e24–32.

    Article  PubMed  Google Scholar 

  41. Floccari LV, Larson AN, Crawford CH, Ledonio CG, Polly DW, Carreon LY, et al. Which malpositioned pedicle screws should be revised? J Pediatr Orthop. 2018;38(2):110–5.

    Article  PubMed  Google Scholar 

  42. Bauer JM, Moore JA, Rangarajan R, Gibbs BS, Yorgova PK, Neiss GI, et al. Intraoperative CT scan verification of pedicle screw placement in AIS to prevent malpositioned screws: safety benefit and cost. Spine Deform. 2018;6(6):662–8.

    Article  PubMed  Google Scholar 

  43. Elmi-Terander A, Burström G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine (Phila Pa 1976). 2019;44(7):517–25.

    Article  Google Scholar 

  44. Elmi-Terander A, Burström G, Nachabe R, Fagerlund M, Ståhl F, Charalampidis A, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep. 2020;10(1):707.

    Google Scholar 

  45. Edström E, Burström G, Persson O, Charalampidis A, Nachabe R, Gerdhem P, et al. Does augmented reality navigation increase pedicle screw density compared to free-hand technique in deformity surgery? Single surgeon case series of 44 patients. Spine (Phila Pa 1976). 2020;45(17):E1085–E90.

    Article  Google Scholar 

  46. Edström E, Burström G, Omar A, Nachabe R, Söderman M, Persson O, et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine (Phila Pa 1976). 2020;45(1):E45–53.

    Article  Google Scholar 

  47. Mularski S, Picht T, Kuehn B, Kombos T, Brock M, Suess OJCAS. Real-time tracking of vertebral body movement with implantable reference microsensors. Comput Aided Surg. 2006;11(3):137–46.

    Article  PubMed  Google Scholar 

  48. Carl B, Bopp M, Sass B, Pojskic M, Nimsky C. Augmented reality in intradural spinal tumor surgery. Acta Neurochir. 2019;161(10):2181–93.

    Article  PubMed  Google Scholar 

  49. Buza JA, Good CR, Lehman RA, Pollina J, Chua RV, Buchholz AL, et al. Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X Stealth Edition (MXSE) system: workflow and technical tips for safe and efficient use. J Robot Surg. 2020:1–11.

    Google Scholar 

  50. Ungi T, Greer H, Sunderland K, Wu V, Baum ZM, Schlenger C, et al. Automatic spine ultrasound segmentation for scoliosis visualization and measurement. IEEE Trans Biomed Eng. 2020;

    Google Scholar 

  51. Chen F, Cui X, Liu J, Han B, Zhang D, Zhang X, et al. Tissue structure updating for in situ augmented reality navigation using calibrated ultrasound and two-level surface warping. IEEE Trans Biomed Eng. 2020;67(11):3211–22.

    PubMed  Google Scholar 

  52. Saß B, Bopp M, Nimsky C, Carl BJWn. Navigated 3-dimensional intraoperative ultrasound for spine. Surgery. 2019;131:e155–e69.

    Google Scholar 

  53. Citardi MJ, Agbetoba A, Bigcas JL, Luong A. Augmented reality for endoscopic sinus surgery with surgical navigation: a cadaver study. Int Forum Allergy Rhinol. 2016;6(5):523–8.

    Article  PubMed  Google Scholar 

  54. Spetzger U, Laborde G, Gilsbach J. Frameless neuronavigation in modern neurosurgery. Minim Invasive Neurosurg. 1995;38(04):163–6.

    Article  CAS  PubMed  Google Scholar 

  55. Abe Y, Sato S, Kato K, Hyakumachi T, Yanagibashi Y, Ito M, et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine. 2013;19(4):492–501.

    Article  PubMed  Google Scholar 

  56. Carl B, Bopp M, Sass B, Nimsky C. Microscope-based augmented reality in degenerative spine surgery: initial experience. World Neurosurg. 2019;128:E541–E51.

    Article  PubMed  Google Scholar 

  57. Carl B, Bopp M, Sass B, Voellger B, Nimsky C. Implementation of augmented reality support in spine surgery. Eur Spine J. 2019;28(7):1697–711.

    Article  PubMed  Google Scholar 

  58. Molina CA, Theodore N, Ahmed AK, Westbroek EM, Mirovsky Y, Harel R, et al. Augmented reality-assisted pedicle screw insertion: a cadaveric proof-of-concept study. J Neurosurg Spine 2019:1–8.

    Google Scholar 

  59. Muller F, Roner S, Liebmann F, Spirig JM, Furnstahl P, Farshad M. Augmented reality navigation for spinal pedicle screw instrumentation using intraoperative 3D imaging. Spine J. 2020;20(4):621–8.

    Article  PubMed  Google Scholar 

  60. Leksell L. A stereotaxic apparatus for intracerebral surgery. Acta Chir Scand. 1950;99(3):229–33.

    Google Scholar 

  61. Jin M, Liu Z, Qiu Y, Yan H, Han X, Zhu Z. Incidence and risk factors for the misplacement of pedicle screws in scoliosis surgery assisted by O-arm navigation-analysis of a large series of one thousand, one hundred and forty five screws. Int Orthop. 2017;41(4):773–80.

    Article  PubMed  Google Scholar 

  62. Uehara M, Takahashi J, Ikegami S, Kuraishi S, Shimizu M, Futatsugi T, et al. Are pedicle screw perforation rates influenced by distance from the reference frame in multilevel registration using a computed tomography-based navigation system in the setting of scoliosis? Spine J. 2017;17(4):499–504.

    Article  PubMed  Google Scholar 

  63. Thomale UW, Kneissler M, Hein A, Maetzig M, Kroppenstedt SN, Lueth T, et al. A spine frame for intra-operative fixation to increase accuracy in spinal navigation and robotics. Comput Aided Surg. 2005;10(3):151–5.

    Article  PubMed  Google Scholar 

  64. Fitzpatrick JM, West JB, Maurer CR Jr. Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging. 1998;17(5):694–702.

    Article  CAS  PubMed  Google Scholar 

  65. Liu H, Wu J, Tang Y, Li H, Wang W, Li C, et al. Percutaneous placement of lumbar pedicle screws via intraoperative CT image-based augmented reality-guided technology. J Neurosurg Spine 2019:1–6.

    Google Scholar 

  66. Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14(3):525–35.

    Article  PubMed  Google Scholar 

  67. Liebmann F, Roner S, von Atzigen M, Scaramuzza D, Sutter R, Snedeker J, et al. Pedicle screw navigation using surface digitization on the Microsoft HoloLens. Int J Comput Assist Radiol Surg. 2019;14(7):1157–65.

    Article  PubMed  Google Scholar 

  68. Urakov TM, Wang MY, Levi AD. Workflow caveats in augmented reality-assisted pedicle instrumentation: cadaver lab. World Neurosurg. 2019;

    Google Scholar 

  69. Wanivenhaus F, Neuhaus C, Liebmann F, Roner S, Spirig JM, Farshad M. Augmented reality-assisted rod bending in spinal surgery. Spine J. 2019;19(10):1687–9.

    Article  PubMed  Google Scholar 

  70. Wei P, Yao Q, Xu Y, Zhang H, Gu Y, Wang L. Percutaneous kyphoplasty assisted with/without mixed reality technology in treatment of OVCF with IVC: a prospective study. J Orthop Surg Res. 2019;14(1):255.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Auloge P, Cazzato RL, Ramamurthy N, de Marini P, Rousseau C, Garnon J, et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur Spine J. 2019;

    Google Scholar 

  72. Elmi-Terander A, Nachabe R, Skulason H, Pedersen K, Söderman M, Racadio J, et al. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. Spine (Phila Pa 1976). 2018;43(14):1018–23.

    Google Scholar 

  73. Burström G, Nachabe R, Persson O, Edström E, Elmi-Terander A. Augmented and virtual reality instrument tracking for minimally invasive spine surgery: a feasibility and accuracy study. Spine (Phila Pa 1976). 2019;44(15):1097–104.

    Google Scholar 

  74. Peh S, Chatterjea A, Pfarr J, Schafer JP, Weuster M, Kluter T, et al. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device. Spine J. 2019;

    Google Scholar 

  75. Hartley R, Zisserman A. Multiple view geometry in computer vision. Cambridge University Press; 2003.

    Google Scholar 

  76. Umeyama S. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell. 1991;4:376–80.

    Article  Google Scholar 

  77. Malham GM, Parker RM. Early experience of placing image-guided minimally invasive pedicle screws without K-wires or bone-anchored trackers. J Neurosurg Spine. 2018;28(4):357–63.

    Article  PubMed  Google Scholar 

  78. Virk S, Qureshi S. Navigation in minimally invasive spine surgery. J Spine Surg. 2019;5(Suppl 1):S25–s30.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Su BW, Kim PD, Cha TD, Lee J, April EW, Weidenbaum M, et al. An anatomical study of the mid-lateral pars relative to the pedicle footprint in the lower lumbar spine. Spine (Phila Pa 1976). 2009;34(13):1355–62.

    Article  Google Scholar 

  80. Miller CA, Ledonio CG, Hunt MA, Siddiq F, Polly DW Jr. Reliability of the planned pedicle screw trajectory versus the actual pedicle screw trajectory using intra-operative 3D CT and image guidance. Int J Spine Surg. 2016;10:38.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yoon JW, Chen RE, Kim EJ, Akinduro OO, Kerezoudis P, Han PK, et al. Augmented reality for the surgeon: systematic review. Int J Med Robot. 2018;14(4):e1914.

    Article  PubMed  Google Scholar 

  82. Fritz J, U-thainual P, Ungi T, Flammang AJ, Fichtinger G, Iordachita II, et al. Augmented reality visualisation using an image overlay system for MR-guided interventions: technical performance of spine injection procedures in human cadavers at 1.5 Tesla. Eur Radiol. 2013;23(1):235–45.

    Article  PubMed  Google Scholar 

  83. Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12(12):2205–15.

    Article  PubMed  Google Scholar 

  84. Umebayashi D, Yamamoto Y, Nakajima Y, Fukaya N, Hara M. Augmented reality visualization-guided microscopic spine surgery: transvertebral anterior cervical foraminotomy and posterior foraminotomy. J Am Acad Orthop Surg Glob Res Rev. 2018;2(4):e008.

    PubMed  PubMed Central  Google Scholar 

  85. Carl B, Bopp M, Sass B, Pojskic M, Gjorgjevski M, Voellger B, et al. Reliable navigation registration in cranial and spine surgery based on intraoperative computed tomography. Neurosurg Focus. 2019;47(6)

    Google Scholar 

  86. Kipper G, Rampolla J. Augmented reality: an emerging technologies guide to AR. Elsevier; 2012.

    Google Scholar 

  87. Liu H, Wu JL, Tang Y, Li HY, Wang WK, Li CQ, et al. Percutaneous placement of lumbar pedicle screws via intraoperative CT image-based augmented reality-guided technology. J Neurosurg Spine. 2020;32(4):542–7.

    Article  Google Scholar 

  88. Peh S, Chatterjea A, Pfarr J, Schafer JP, Weuster M, Kluter T, et al. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device. Spine J. 2020;20(4):629–37.

    Article  PubMed  Google Scholar 

  89. Fletcher-Sandersjöö A, Edström E, Kuntze Söderqvist A, Grane P, Elmi-Terander A. Long-term pain relief following percutaneous steroid treatment of spinal synovial cysts: a population-based cohort study. J Neurointerv Surg. 2020;

    Google Scholar 

  90. Fritz J, Niemeyer T, Clasen S, Wiskirchen J, Tepe G, Kastler B, et al. Management of chronic low back pain: rationales, principles, and targets of imaging-guided spinal injections. Radiographics. 2007;27(6):1751–71.

    Article  PubMed  Google Scholar 

  91. Carrino JA, Morrison WB, Parker L, Schweitzer ME, Levin DC, Sunshine JH. Spinal injection procedures: volume, provider distribution, and reimbursement in the U.S. medicare population from 1993 to 1999. Radiology. 2002;225(3):723–9.

    Article  PubMed  Google Scholar 

  92. Krombach GA, Schmitz-Rode T, Wein BB, Meyer J, Wildberger JE, Brabant K, et al. Potential of a new laser target system for percutaneous CT-guided nerve blocks: technical note. Neuroradiology. 2000;42(11):838–41.

    Article  CAS  PubMed  Google Scholar 

  93. Nawfel RD, Judy PF, Silverman SG, Hooton S, Tuncali K, Adams DF. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology. 2000;216(1):180–4.

    Article  CAS  PubMed  Google Scholar 

  94. Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT. CT fluoroscopy--guided interventional procedures: techniques and radiation dose to radiologists. Radiology. 2001;220(1):161–7.

    Article  CAS  PubMed  Google Scholar 

  95. Wagner LK. CT fluoroscopy: another advancement with additional challenges in radiation management. Radiology. 2000;216(1):9–10.

    Article  CAS  PubMed  Google Scholar 

  96. Wagner AL. Selective lumbar nerve root blocks with CT fluoroscopic guidance: technique, results, procedure time, and radiation dose. AJNR Am J Neuroradiol. 2004;25(9):1592–4.

    PubMed  PubMed Central  Google Scholar 

  97. Weiss CR, Nour SG, Lewin JS. MR-guided biopsy: a review of current techniques and applications. J Magn Reson Imaging. 2008;27(2):311–25.

    Article  PubMed  Google Scholar 

  98. Blanco Sequeiros R, Carrino JA. Musculoskeletal interventional MR imaging. Magn Reson Imaging Clin N Am. 2005;13(3):519–32.

    Article  PubMed  Google Scholar 

  99. Fritz J, Henes JC, Thomas C, Clasen S, Fenchel M, Claussen CD, et al. Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol. 2008;191(6):1717–24.

    Article  PubMed  Google Scholar 

  100. Fritz J, Clasen S, Boss A, Thomas C, Konig CW, Claussen CD, et al. Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol. 2008;18(7):1513–8.

    Article  CAS  PubMed  Google Scholar 

  101. Fritz J, Thomas C, Tzaribachev N, Horger MS, Claussen CD, Lewin JS, et al. MRI-guided injection procedures of the temporomandibular joints in children and adults: technique, accuracy, and safety. AJR Am J Roentgenol. 2009;193(4):1148–54.

    Article  PubMed  Google Scholar 

  102. Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL. Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol. 2009;192(4):W161–7.

    Article  PubMed  Google Scholar 

  103. Fritz J, Tzaribachev N, Thomas C, Carrino JA, Claussen CD, Lewin JS, et al. Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis. Eur Radiol. 2011;21(5):1050–7.

    Article  CAS  PubMed  Google Scholar 

  104. Ojala R, Klemola R, Karppinen J, Sequeiros RB, Tervonen O. Sacro-iliac joint arthrography in low back pain: feasibility of MRI guidance. Eur J Radiol. 2001;40(3):236–9.

    Article  CAS  PubMed  Google Scholar 

  105. Ojala R, Vahala E, Karppinen J, Klemola R, Blanco-Sequeiros R, Vaara T, et al. Nerve root infiltration of the first sacral root with MRI guidance. J Magn Reson Imaging. 2000;12(4):556–61.

    Article  CAS  PubMed  Google Scholar 

  106. Smith KA, Carrino JA. MRI-guided interventions of the musculoskeletal system. J Magn Reson Imaging. 2008;27(2):339–46.

    Article  PubMed  Google Scholar 

  107. Moche M, Trampel R, Kahn T, Busse H. Navigation concepts for MR image-guided interventions. J Magn Reson Imaging. 2008;27(2):276–91.

    Article  PubMed  Google Scholar 

  108. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, et al. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging. 2001;13(6):967–75.

    Article  CAS  PubMed  Google Scholar 

  109. Wacker FK, Vogt S, Khamene A, Jesberger JA, Nour SG, Elgort DR, et al. An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology. 2006;238(2):497–504.

    Article  PubMed  Google Scholar 

  110. Weiss CR, Marker DR, Fischer GS, Fichtinger G, Machado AJ, Carrino JA. Augmented reality visualization using image-overlay for MR-guided interventions: system description, feasibility, and initial evaluation in a spine phantom. AJR Am J Roentgenol. 2011;196(3):W305–7.

    Article  PubMed  Google Scholar 

  111. Mewes A, Heinrich F, Hensen B, Wacker F, Lawonn K, Hansen C. Concepts for augmented reality visualisation to support needle guidance inside the MRI. Healthc Technol Lett. 2018;5(5):172–6.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mewes A, Heinrich F, Kagebein U, Hensen B, Wacker F, Hansen C. Projector-based augmented reality system for interventional visualization inside MRI scanners. Int J Med Robot. 2019;15(1):e1950.

    Article  PubMed  Google Scholar 

  113. Kochanski RB, Lombardi JM, Laratta JL, Lehman RA, O’Toole JE. Image-guided navigation and robotics in spine surgery. Neurosurgery. 2019;84(6):1179–89.

    Article  PubMed  Google Scholar 

  114. Frisk H, Lindqvist E, Persson O, Weinzierl J, Bruetzel LK, Cewe P, Burström G, Edström E, Elmi-Terander A. Feasibilityand accuracy of thoracolumbar pedicle screw placement using an augmented reality head mounted device. Sensors (Basel). 2022;22(2):522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Elmi-Terander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burström, G., Persson, O., Edström, E., Elmi-Terander, A. (2022). Current Status of Augmented Reality in the Spine. In: Kim, JS., Härtl, R., Wang, M.Y., Elmi-Terander, A. (eds) Technical Advances in Minimally Invasive Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-0175-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0175-1_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0174-4

  • Online ISBN: 978-981-19-0175-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics