Skip to main content

The Six Pillars of Minimally Invasive Spine Surgery

  • Chapter
  • First Online:
Technical Advances in Minimally Invasive Spine Surgery

Abstract

Low back pain is the leading cause of years lost to disability globally, a figure which continues to increase along with the average age of our population [1]. Commensurate with the growing pervasiveness of back pain, spine surgical procedures across the spectrum have increased in prevalence—from fusion surgery to minimally invasive outpatient spine surgery [2]. Advances in minimally invasive approaches to the spine have been particularly rapid due to a myriad of published clinical and economic benefits including superior preservation of normal tissue and decreased morbidity which has facilitated a decrease in postoperative pain, hospital stay and ultimately a decrease in short- and long-term complications and associated healthcare costs [3]. MIS approaches have also demonstrated advantages over conventional open surgery in terms of patient satisfaction, a trend which has driven further demand for minimally invasive approaches to a wider range of pathologies [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grotle M, Småstuen MC, Fjeld O, Grøvle L, Helgeland J, Storheim K, et al. Lumbar spine surgery across 15 years: trends, complications and reoperations in a longitudinal observational study from Norway. BMJ Open. 2019;9(8):1–7.

    Article  Google Scholar 

  2. Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine. 2019;44(5). https://journals.lww.com/spinejournal/Fulltext/2019/03010/Trends_in_Lumbar_Fusion_Procedure_Rates_and.14.aspx

  3. Basil GW, Wang MY. Trends in outpatient minimally invasive spine surgery. J Spine Surg (Hong Kong). 2019;5(Suppl 1):S108–14. https://pubmed.ncbi.nlm.nih.gov/31380499

    Article  Google Scholar 

  4. Peng H, Tang G, Zhuang X, Lu S, Bai Y, Xu L. Minimally invasive spine surgery decreases postoperative pain and inflammation for patients with lumbar spinal stenosis. Exp Ther Med. 2019;18(4):3032–6. https://pubmed.ncbi.nlm.nih.gov/31555386

    PubMed  PubMed Central  Google Scholar 

  5. Schmidt FA, Wong T, Kirnaz S, Taboada N, Assaker R, Hofstetter C, et al. Development of a curriculum for minimally invasive spine surgery (MISS). Glob Spine J. 2020;10(2_suppl):122S–5S.

    Article  Google Scholar 

  6. Andersson G, Buvenenadran A, Lauryssen C, Cappuccino A, Garfin S, Pimenta L, et al. Summary statement: minimally invasive spine surgery. Spine. 2010;35(26):S271–3.

    Article  Google Scholar 

  7. McDermott KW, Freeman WJ, Elixhauser A. Overview of operating room procedures during inpatient stays in U.S. hospitals, 2014: statistical brief #233. In: Healthcare cost and utilization project (HCUP) statistical briefs. Rockville, MD: Agency for Healthcare Research and Quality (US); 2006. p. 1–14. http://www.ncbi.nlm.nih.gov/pubmed/29578672.

    Google Scholar 

  8. Rajaee SS, Bae HW, Kanim LEA, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012;37(1):67–76.

    Article  Google Scholar 

  9. del Castillo-Calcáneo J, Navarro-Ramirez R, Gimenez-Gigon M, Adjei J, Damolla A, Nakhla J, et al. Principles and fundamentals of minimally invasive spine surgery. World Neurosurg. 2018;119:465–71.

    Article  Google Scholar 

  10. Härtl R. The 6 T’s of minimally invasive spine surgery. Glob Spine J. 2020;10(2_suppl):5S–7S. https://doi.org/10.1177/2192568220911617.

    Article  Google Scholar 

  11. Yaşargil MG, Krayenbühl H. The use of the binocular microscope in neurosurgery. Bibliotheca ophthalmologica : supplementa ad ophthalmologica. 1970;81:62–5.

    Google Scholar 

  12. Navarro-Ramirez R, Lang G, Lian X, Berlin C, Janssen I, Jada A, et al. Total navigation in spine surgery; a concise guide to eliminate fluoroscopy using a portable intraoperative computed tomography 3-dimensional navigation system. World Neurosurg. 2017;100:325–35.

    Article  Google Scholar 

  13. Fomekong E, Safi SE, Raftopoulos C. Spine navigation based on 3-dimensional robotic fluoroscopy for accurate percutaneous pedicle screw placement: a prospective study of 66 consecutive cases. World Neurosurg. 2017;108:76–83. https://doi.org/10.1016/j.wneu.2017.08.149.

    Article  PubMed  Google Scholar 

  14. Yaşargil MG, Tranmer BI, Adamson TE, Roth P. Unilateral partial hemi-laminectomy for the removal of extra- and intramedullary tumours and AVMs. Adv Tech Stand Neurosurg. 1991;18:113–32.

    Article  Google Scholar 

  15. Wipplinger C, Melcher C, Hernandez RN, Lener S, Navarro-Ramirez R, Kirnaz S, et al. “One and a half” minimally invasive transforaminal lumbar interbody fusion: single level transforaminal lumbar interbody fusion with adjacent segment unilateral laminotomy for bilateral decompression for spondylolisthesis with bisegmental stenosis. J Spine Surg (Hong Kong). 2018;4(4):780–6.

    Article  Google Scholar 

  16. Boukebir MA, Berlin CD, Navarro-Ramirez R, Heiland T, Schöller K, Rawanduzy C, et al. Ten-step minimally invasive spine lumbar decompression and dural repair through tubular retractors. Oper Neurosurg. 2017;13(2):232–45.

    Article  Google Scholar 

  17. Destandau J. A special device for endoscopic surgery of lumbar disc herniation. Neurol Res. 1999;21(1):39–42.

    Article  CAS  Google Scholar 

  18. Lübbers T, Abuamona R, Elsharkawy AE. Percutaneous endoscopic treatment of foraminal and extraforaminal disc herniation at the L5-S1 level. Acta Neurochir. 2012;154(10):1789–95.

    Article  Google Scholar 

  19. Hussain I, Rapoport BI, Krause K, Kinney G, Hofstetter CP, Elowitz E. Transforaminal endoscopic lumbar discectomy and foraminotomy with modified radiofrequency nerve stimulator and continuous electromyography under general anesthesia. World Neurosurg. 2020;137:102–10.

    Article  Google Scholar 

  20. Parikh K, Tomasino A, Knopman J, Boockvar J, Härtl R. Operative results and learning curve: microscope-assisted tubular microsurgery for 1- and 2-level discectomies and laminectomies. Neurosurg Focus. 2008;25(2):E14.

    Article  Google Scholar 

  21. Son-Hing JP, Blakemore LC, Poe-Kochert C, Thompson GH. Video-assisted thoracoscopic surgery in idiopathic scoliosis: evaluation of the learning curve. Spine. 2007;32(6):703–7.

    Article  Google Scholar 

  22. Lau D, Lee JG, Han SJ, Lu DC, Chou D. Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF). J Clin Neurosci. 2011;18(5):624–7.

    Article  Google Scholar 

  23. Feng C, Zhang Y, Chong F, Yang M, Liu C, Liu L, et al. Establishment and implementation of an enhanced recovery after surgery (ERAS) pathway tailored for minimally invasive transforaminal lumbar interbody fusion surgery. World Neurosurg. 2019;129:e317–23.

    Article  Google Scholar 

  24. Schmidt-Tintemann U. Women in surgery. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen. 1997;68(6):583–5. https://doi.org/10.1007/s001040050233.

    Article  CAS  PubMed  Google Scholar 

  25. Gagné F. From genes to talent: the DMGT/CMTD perspective. Rev Educ. 2015; https://doi.org/10.4438/1988-592X-RE-2015-368-289.

  26. Gagné F. Nature or nurture? A re-examination of Sloboda and Howe’s (1991) interview study on talent development in music. Psychol Music. 1999;27:38–51.

    Article  Google Scholar 

  27. Ericsson KA, Nandagopal K, Roring RW. Toward a science of exceptional achievement. Ann N Y Acad Sci. 2009;1172:199–217.

    Article  Google Scholar 

  28. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10):S70–81.

    Article  Google Scholar 

  29. Jensen RD, Christensen MK, LaDonna KA, Seyer-Hansen M, Cristancho S. How surgeons conceptualize talent: a qualitative study using sport science as a lens. J Surg Educ. 2017;74(6):992–1000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Härtl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atalay, B. et al. (2022). The Six Pillars of Minimally Invasive Spine Surgery. In: Kim, JS., Härtl, R., Wang, M.Y., Elmi-Terander, A. (eds) Technical Advances in Minimally Invasive Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-0175-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0175-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0174-4

  • Online ISBN: 978-981-19-0175-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics