Skip to main content

Nutritional Strategies to Improve Reproductive Efficiency in Cattle and Buffaloes

  • Chapter
  • First Online:
Current Concepts in Bovine Reproduction

Abstract

Nutrition is an integral part of biological system. Excess or deficiency of any nutrient will affect availability of other nutrients and hamper metabolic process. Energy, protein and minerals are essential for optimum reproduction. Improved genetic potential for milk production causes stress on animals and consequently reduces fertility. Negative energy balance is crucial factor for delayed fertility in lactating dairy animals. Demand for protein increases with peak milk yield causes excess supply of protein, in particular, rumen degradable protein (RDP), leading to infertility or repeat breeding in high yielders. Requirement of minerals may be lesser in quantity, but it exerts huge biochemical role viz., integral part of several enzymes, synthesis of hormones, antioxidant, maintenances of epithelium, etc. This chapter deals with nutrients needed for efficient reproduction, its function, level of feeding and feeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboozar M, Amanlou H, Aghazadeh AM, Adl KN, Moeini M, Tanha T (2012) Impacts of different levels of RUP on performance and reproduction of Holstein fresh cows. J Anim Vet Adv 11:1338–1345

    Article  CAS  Google Scholar 

  • Agarwal KP (2003) Augmentation of reproduction in buffaloes. In 4th Asian Buffalo Congress New Delhi, India, p 121

    Google Scholar 

  • Alotaibi M (2014) The physiological mechanism of uterine contraction with emphasis on calcium ion. Calcium Sig 5:1168–1176

    Google Scholar 

  • Ammerman CB, Baker DH, Lewis AJ (1995) Bioavailability of nutrients for animals: amino acids, minerals, and vitamins. Academic Press, New York

    Google Scholar 

  • Arabi F, Imandar M, Negahdary M, Imandar M, Noughabi MT, Akbari-dastjerdi H, Fazilati M (2012) Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of listeria monocytogenes. Ann Biol Res 3:3679–3685

    CAS  Google Scholar 

  • Bao YM, Choct M, Iji PA, Bruerton K (2007) Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J Appl Poultry Res 16:448–455

    Article  CAS  Google Scholar 

  • Barton BA (1996) Determining if reproduction is affected by a nutrient imbalance. In Proc. tri-state dairy nutrition conference, pp 17–32

    Google Scholar 

  • Beam SW, Butler WR (1998) Energy balance, metabolic hormones, and early postpartum follicular development in dairy cows fed prilled lipid. J Dairy Sci 81:121–131

    Article  CAS  PubMed  Google Scholar 

  • Beam SW, Butler WR (1999) Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. J Reprod Fertil 54:411–424

    CAS  Google Scholar 

  • Bell AW, Rymph MB, Slepetis R, House WA, Ehrhardt RA (1992) Net nutrient requirements for conceptus growth in Holstein cows—implications for dry cow feeding. In Proc. Cornell nutrition conference. Feed Manuf., Rochester, NY. Cornell University, Ithaca, NY, pp 102–109

    Google Scholar 

  • Benon KM, Owiny DO, Bage R, Nassuna-Musoke MG, Humblot P, Magnusson U (2015) Managerial practices and factors influencing reproductive performance of dairy cows in urban/peri-urban areas of Kampala and Gulu, Uganda. Acta Vet Scand 57:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Binsila BK, Selvaraju S, Gowda NKS, Subramanya KB, Pal D, Archana SS, Bhatta R (2019) Dietary boron supplementation enhances sperm quality and immunity through influencing the associated biochemical parameters and modulating the genes expression at testicular tissue. J Trace Elem Med Biol 55:6–14

    Article  CAS  Google Scholar 

  • Burtis CA, Ashwood ER, Bruns DE (2006) Tietz textbook of clinical chemistry and molecular diagnostics, 4th edn. WB Saunders, Philadelphia

    Google Scholar 

  • Butler WR (1998) Review: effect of protein nutrition on ovarian and uterine physiology in dairy cattle. J Dairy Sci 81:2533–2539

    Article  CAS  PubMed  Google Scholar 

  • Campanile G, Baruselli PS, Vecchio D, Prandi A, Neglia G, Carvalho NA, Sales JN, Gasparrini B, D’Occhio MJ (2010) Growth, metabolic status and ovarian function in buffalo (Bubalus bubalis) heifers fed a low-energy or high-energy diet. Anim Reprod Sci 122:74–81

    Article  CAS  PubMed  Google Scholar 

  • Demmers KJ, Smaill B, Davis GH, Dodds KG, Juengel JL (2011) Heterozygous Inverdale ewes show increased ovulation rate sensitivity to pre-mating nutrition. Reprod Fertil Dev 23:866–875

    Article  CAS  PubMed  Google Scholar 

  • Downing JA, Joss J, Connell P, Scaramuzzi RJ (1995) Ovulation rate and the concentrations of gonadotrophin and metabolic hormones in ewes fed lupin grain. J Reprod Fertil 103:137–145

    Article  CAS  PubMed  Google Scholar 

  • Elrod CC, Butler WR (1993) Reduction of fertility and alteration of uterine pH in heifers fed excess ruminally degradable protein. J Anim Sci 71:694–701

    Article  CAS  PubMed  Google Scholar 

  • Farahavar A, Rostami Z, Alipour D, Ahmadi A (2020) The effect of pre-breeding vitamin E and selenium injection on reproductive performance, antioxidant status, and progesterone concentration in estrus-synchronized Mehraban ewes. Tropl Anim Health Prod 5:1–8

    Google Scholar 

  • Feng M, Wang ZS, Zhou AG (2009) The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pak J Nutr 8:1164–1166

    Article  CAS  Google Scholar 

  • Ferguson JD, Blanchard T, Galligan DT, Hoshall DC, Chalupa W (1988) Infertility in dairy cattle fed a high percentage of protein degradable in the rumen. J Amer Veterin Assoc 192:659–662

    CAS  Google Scholar 

  • Gowda NKS, Pal DT, Chandrappa T, Verma S, Chauhan V, Maya G, Sampath KT, Prasad CS (2009) Supplementation of ragi (Eleucine coracana) grain as a locally available energy source for lactating cows: a field study. Indian J Anim Sci 79(6):594–598

    Google Scholar 

  • Gowda NKS, Manegar A, Raghavendra A, Verma S, Maya G et al (2013a) Effect of protected fat supplementation to high yielding dairy cows in field condition. Anim Nutr Feed Technol 13:125–130

    CAS  Google Scholar 

  • Gowda NKS, Pal DT, Chhabra A, Prasad CS (2013b) Advances in mineral and vitamin nutrition of livestock. In: ICAR hand book of animal husbandry, 4th edn. Directorate of Knowledge Management in Agriculture, Delhi, pp 278–301

    Google Scholar 

  • Gowda NKS, Suganthi RU, Malathi V, Raghavendra A (2007) Utilization of dietary minerals and blood biochemical values in lambs fed hydrated sodium calcium alumino silicate sorbent material at supplementary level, small ruminant. Research 69:17–22

    Google Scholar 

  • ICAR (2013) Nutrient requirement of cattle and buffaloes, 3rd edn. Indian Council of Agricultural Research and National Institute of Animal Nutrition and Physiology, New Delhi, Bangalore

    Google Scholar 

  • Jordan ER, Chapman TE, Holtan DW, Swanson LV (1983) Relationship of dietary crude protein to composition of uterine secretions and blood in high-producing dairy cows. J Dairy Sci 66:1854–1862

    Article  CAS  PubMed  Google Scholar 

  • Juneja SC, Arora SP (1990) Oestrous behaviour and annual pattern of peripheral progesterone in crossbred cows at two levels of nutrition. Indian J Anim Reprod 11:31–34

    Google Scholar 

  • Kaur H, Arora SP (1989) Growth and puberty as influenced by plane of nutrition in Murrah buffaloes. Buffalo J 5:57–64

    Google Scholar 

  • Kaur H, Arora SP (1995) Dietary effects on ruminant livestock reproduction with particular reference to protein. Nutr Res Rev 8:121–136

    Article  CAS  PubMed  Google Scholar 

  • Kearl LC (1982) Nutrient requirements of ruminants in developing countries. International Feedstuff Institute, Utah State University, Logan

    Google Scholar 

  • Keen CL, Zidenberg-Cheer S (1990) Manganese. In: Brown ML (ed) Present knowledge in nutrition. International Life Science Institute Nutrition Foundation, Washington, D.C, pp 279–268

    Google Scholar 

  • Kumar PR, Shukla SN, Purkayastha RD (2013) Economical analysis of the estimated cost of management of anestrus buffaloes under field conditions using different hormonal and non–hormonal strategies. J Animal Health Prod 1:39–41

    CAS  Google Scholar 

  • Laven RA, Scaramuzzi RJ, Wathes DC, Peters AR, Parkinson TJ (2007) Recent research on the effects of excess dietary nitrogen on the fertility of dairy cows. Vet Rec 160:359–362

    Article  CAS  PubMed  Google Scholar 

  • Law RA, Young FJ, Patterson DC, Kilpatrick DJ, Wylie ARG, Mayne CS (2009) Effect of dietary protein content on the fertility of dairy cows during early and mid lactation. J Dairy Sci 92:2737–2746

    Article  CAS  PubMed  Google Scholar 

  • Lean IJ, Celi P, Raadsma H, Mc Namara J, Rabiee AR (2012) Effects of dietary crude protein on fertility: meta –analysis and meta-regression. Anim Feed Sci Technol 171:31–42

    Article  CAS  Google Scholar 

  • Lohakare JD, Sudekum KH, Pattanaik AK (2012) Nutrition-induced changes of growth from birth to first calving and its impact on mammary development and first-lactation milk yield in dairy heifers: a review. Asian-Australasian J Animal Sci 25:1338–1350

    Article  CAS  Google Scholar 

  • McClure TJ (1994) Nutritional and metabolic infertility in the cow. CAB International, Oxon, p 49

    Google Scholar 

  • McDowell LR (2003) Minerals in animals and human nutrition, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Mishra A, Swain RK, Mishra SK, Panda N, Sethy K (2014) Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J Anim Nutr 31:384–388

    Google Scholar 

  • Nielsen FH (2017) Historical and recent aspects of boron in human and animal health. J Boron 2:153–160

    Google Scholar 

  • Nollet L, Huyghebaert G, Spring P (2008) Effect of different levels of dietary organic (Biolpex) trace minerals on live performance of broiler chickens by growth phases. J Appl Poultry Res 17:109–115

    Article  CAS  Google Scholar 

  • NRC (2001) Nutrient requirement of dairy cattle. National Academy Press, Washington, DC

    Google Scholar 

  • Pal DT, Gowda NKS, Prasad CS, Amarnath R, Bharadwaj U, Babu GS, Sampath KT (2010) Effect of copper-and zinc-methionine supplementation on bioavailability, mineral status and tissue concentrations of copper and zinc in ewes. J Trace Elem Med Biol 24:89–94

    Article  CAS  PubMed  Google Scholar 

  • Patel BR, Mudgal VD (1975) Protein requirement for maintenance of crossbred cattle. Indian J Dairy Sci 28:93–97

    Google Scholar 

  • Paul SS, Lal D (2010) Nutrient requirement of buffaloes. Satish Serial Publishing House, New Delhi

    Google Scholar 

  • Peter AT, Vos PLAM, Ambrose DJ (2009) Postpartum anestrus in dairy cattle. Theriogenology 71:1333–1342

    Article  CAS  PubMed  Google Scholar 

  • Peter JC, Mahan DC (2008) Effects of dietary organic and inorganic trace mineral levels on sow reproductive performances and daily mineral intakes over six parities. J Anim Sci 86:2247–2260

    Article  CAS  Google Scholar 

  • Rajendran D (2013) Application of Nano minerals in animal production system. Res J Biotechnol 8:1–3

    CAS  Google Scholar 

  • Rajendran D, Balakrishnan V (2012) Diet composition, biomass yield and mineral contents of vegetation in native tract of mecheri sheep. Anim Nutr Feed Technol 12:163–171

    Google Scholar 

  • Rajendran D, Kumar G, Ramakrishnan S, Thomas KS (2013) Enhancing the milk production and immunity in Holstein Friesian crossbred cow by supplementing novel nano zinc oxide. Res J Biotechnol 8:11–17

    CAS  Google Scholar 

  • Rajendran D, Pattanaik AK, Khan SA, Bedi SPS (2002) Influence of iodine on reproductive performance of bucks fed subabul (Leucaena leucocephala) leaf- meal. Indian J Anim Sci 72:802–805

    CAS  Google Scholar 

  • Ranjhan SK (1998) Nutrient requirements of livestock and poultry. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Roychoudhury S, Nath S, Massanyi P, Stawarz R, Kacaniova M, Kolesarova A (2016) Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiol Res 65:11

    Article  CAS  PubMed  Google Scholar 

  • Santos JEP (2008) Nutrition and reproduction in dairy cattle. Tri-state dairy nutrition conference, Columbus

    Google Scholar 

  • Satish K (2003) Management of infertility due to mineral deficiency in dairy animals. In Proceedings of ICAR summer school on advance diagnostic techniques and therapeutic approaches to metabolic and deficiency diseases

    Google Scholar 

  • Selvaraju S, Agarwal SK, Karche SD, Srivastava SK, Majumdar AC, Shanker U (2002) Fertility responses and hormonal profiles in repeat breeding cows treated with insulin. Anim Reprod Sci 73:141–149

    Article  CAS  PubMed  Google Scholar 

  • Selvaraju S, Bhat KS, Archana SS, Gowda NKS, Krishnan BB, Reddy IJ, Pal DT, Roy KS, Ravindra JP (2017) Profile of plasma bio molecules and minerals in various reproductive status of cattle and buffaloes, Indian journal of animal. Science 87:1071–1076

    CAS  Google Scholar 

  • Selvaraju S, Reddy IJ, Gowda NKS, Prasad CS, Ananthram K, Sampath KT (2009) Effect of supplementation of area specific mineral mixture in improving reproductive efficiency in crossbred dairy cattle: a field study. Indian J Anim Sci 79(6):599–601

    CAS  Google Scholar 

  • Sinclair KD, Garnsworthy PC, Mann GE, Sinclair LA (2014) Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal 8:262–274

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Singhal S, Phogat JB, Jan MH, Singh N, Singh P (2019) Dynamics of selected trace minerals during estrus induction in anestrus Sahiwal cattle. J Anim Res 9:843–848

    Google Scholar 

  • Sivaiah K, Mudgal VD (1983) Protein requirement of maintenance and milk production in buffaloes (Bubalus babalis) in first lactation. Indian J Anim Sci 53:238–242

    CAS  Google Scholar 

  • Swain PS, Rajendran D, Rao SBN, Dominic G (2015) Preparation and effects of nano mineral particle feeding in livestock: a review. Veterinary World 8:888–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Animal Nutrition 2:134–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Swain PS, Rao SBN, Rajendran D, Pal DT, Mondal SS, S. (2018b) Effect of supplementation of nano zinc oxide on nutrient retention, organ and serum minerals profile, and hepatic metallothionein gene expression in Wister albino rats. Biol Trace Elem Res 190:76–86

    Article  PubMed  CAS  Google Scholar 

  • Swain PS, Rao SBN, Rajendran D, Soren N, M., Pal, D.T., Karthik Bhat, S. (2018a) Effect of supplementation of Nano zinc on rumen fermentation and fiber degradability in goats. Anim Nutr Feed Technol 18(3):297–309

    Article  Google Scholar 

  • Tandon M, Siddique RA, Ambwani T (2008) Role of bypass proteins in ruminant production. Dairy. Plan Theory 4:11–14

    CAS  Google Scholar 

  • Tuormaa TE (2000) Chromium selenium copper and other trace minerals in health and reproduction. J Orthomolec Med 15:145–157

    Google Scholar 

  • Wang Y, Tang JW, Ma WQ, Feng J, Feng J (2010) Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol Trace Elem Res 133:325–334

    Article  CAS  PubMed  Google Scholar 

  • Wankhade PR, Manimaran A, Kumaresan A, Jeyakumar S, Ramesha KP, Sejian VR, D., Bagath, M., Sivaram, M. (2018) Metabolism and immune status during transition period influences the lactation performance in zebu (Bos indicus) cows. Indian J Anim Sci 88:1064–1069

    CAS  Google Scholar 

  • Warriach HM, McGill DM, Bush RD, Wynn PC, Chohan KR (2015) A review of recent developments in buffalo reproduction. Asian Australas J Anim Sci 28:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwood CT, Lean IJ, Kellaway RC (1998) Indications and implications for testing of milk urea in dairy cattle: a quantitative review. Part 2. Effect of dietary protein on reproductive performance. N Z Vet J 46:123–130

    Article  CAS  PubMed  Google Scholar 

  • Yang ZP, Sun LP (2006) Effects of nanometre ZnO on growth performance of early weaned piglets. J Shanxi Agric Sci 3:024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajendran, D., Gowda, N.K.S., Rao, S.B.N., Babu, P.E., Manimaran, A., Kumaresan, A. (2022). Nutritional Strategies to Improve Reproductive Efficiency in Cattle and Buffaloes. In: Kumaresan, A., Srivastava, A.K. (eds) Current Concepts in Bovine Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-19-0116-4_4

Download citation

Publish with us

Policies and ethics