Skip to main content

Abstract

Computed tomography (CT) represents the most current modality used to evaluate hepato-biliary tree and pancreatic (HBP) surgical pathology. Multidetector CT (MDCT) is a very quick, robust, reproductible and reliable method for the pretherapeutic and postsurgical hepato-biliary tree and pancreatic diagnostic. Using a correct and a specific CT protocol for the HBP region in correlation with multiplanar reconstructions, maximum intensity and 3D reconstructions, CT provides detailed and consistent information’s regarding the type of mass, its characteristics, volumetry and local extension, allowing to appreciate the vascular involvement and tumor resectability but also in malignant tumoral pathology the presence of distant metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catalano OA, Singh AH, Uppot RN, et al. Vascular and biliary variants in the liver: implications for liver surgery. Radiographics. 2008;28:359–78.

    Article  Google Scholar 

  2. Lupescu IG, Boros M, Georgescu SA. Imagistica Ficatului, în Tratat de Chirurgie sub redacția Popescu I, vol IX, Chirurgie generala (partea a II-a). Editura Academiei Romane. 2009;51:580–634.

    Google Scholar 

  3. Federle MP, Jeffrey RB, Tublin ME, Borhani AA. Hepatobiliary and pancreas. Amyrsis. 2013;I-54-74, I240-329, II-2-172:3-2-63.

    Google Scholar 

  4. Murakami T, Kim T, Takamura M, et al. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology. 2001;218(763–76):18.

    Google Scholar 

  5. Brambs H-J. Foie, Vesicule et voies biliaire, pancreas în Appareil Digestif. Lavoisier. 2010:1–137.

    Google Scholar 

  6. Choi BI (editor). Radiology illustrated: hepatobiliary and pancreatic radiology. Springer 2014, 3–719.

    Google Scholar 

  7. Lupescu IG, Stoica ZS. Radiologia gastrointestinalã și abdominală, în Radiologie Imagistică Medicală sub redacția Dudea SM. Editura Medicală. 2015;I(7):672–704.

    Google Scholar 

  8. Ioana G Lupescu. Imagistica in patologia chirurgicala hepato-bilio-pancreatica., in Tratat de chirurgie hepato-biliopancreatica si transplant heptic, coordonator Irinel Popescu. Editura Academiei Romane, 2016;cap 3:38 pag.

    Google Scholar 

  9. CT/MRI LI-RADS® v2018. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018

  10. Iannaccone R, Laghi A, Catalano C, et al. Hepatocellular carcinoma: role of unenhanced and delayed phase multidetector row helical CT in patients with cirrhosis. Radiology. 2005;234:460–7.

    Article  Google Scholar 

  11. Hayashi M, Matsui O, Ueda K, Kawamori Y, Gabata T, Kadoya M. Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material. Radiology. 2002;225:143–9.

    Article  Google Scholar 

  12. Erturk SM, Ichikawa T. Teaching Atlas of hepatobiliary and pancreatic Imaging, Springer 2016, 1–221.

    Google Scholar 

  13. Matsui O, Kobayashi S, Sanada J, et al. Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis. Abdom Imaging 2011; 36(3): 264–272. 27.

    Google Scholar 

  14. Taouli B, Goh JS, Lu Y, et al. Growth rate of hepatocellular carcinoma: evaluation with serial computed tomography or magnetic resonance imaging. J Comput Assist Tomogr. 2005;29:425–9.

    Article  Google Scholar 

  15. Jha RC, et al. LI-RADS categorization of benign and likely benign findings in patients at risk of hepatocellular carcinoma: a pictorial Atlas. AJR. 2014;203:W48–69.

    Article  Google Scholar 

  16. Brancatelli G, Baron RL, Peterson MS, Marsh W. Helical CT screening for hepatocellular carcinoma in patients with cirrhosis: frequency and causes of false-positive interpretation. AJR. 2003;180:1007–14.

    Article  Google Scholar 

  17. Hwang GJ, Kim MJ, Yoo HS, Lee JT. Nodular hepatocellular carcinomas: detection with arterial-, portal-, and delayed-phase images at spiral CT. Radiology. 1997;202:383.

    Article  CAS  Google Scholar 

  18. Lim JH, Kim MJ, Park CK, Kang SS, Lee WJ, Lim HK. Dysplastic nodules in liver cirrhosis: detection with triple phase helical dynamic CT. Br J Radiol. 2004;77(911–916):47.

    Google Scholar 

  19. Erbay N, Raptopoulos V, Pomfret EA, et al. Liver donor-liver transplantation in adults: vascular variants important in surgical planning for donors and recipients. AJR. 2003;16(181):109–14.

    Article  Google Scholar 

  20. Singh AK, Cronin CG, Verma HA, et al. Imaging of preoperative liver transplantation in adults: What radiologists should know. Radiographics. 2011;31:1017–30.

    Article  Google Scholar 

  21. Iannaccone R, Laghi A, Catalano C, et al. Hepatocellular carcinoma: role of unenhanced and delayed phase multidetector row helical CT in patients with cirrhosis. Radiology. 2005;234:460–7.

    Article  Google Scholar 

  22. Vitale A, Cucchetti A, et al. Is resectable hepatocellular carcinoma a contraindication to liver transplantation? A novel decision model based on “number of patients needed to transplant” as measure of transplant benefit. J Hepatol. 2014;60:1165–71.

    Article  CAS  Google Scholar 

  23. Li JP, Zhao DL, et al. Assessment of tumor vascularization with functional computed tomography perfusion imaging in patients with cirrhotic liver disease. Hepatobiliary Pancreat Dis Int. 2011;10(1):43–9.

    Google Scholar 

  24. Araújo CCV, Balbi E, Pacheco-Moreira LF, et al. Evaluation of living donor liver transplantation: causes for exclusion. Transpl Proc. 2010;42(2):424–5.

    Article  Google Scholar 

  25. Zamboni GA, Pedrosa I, Kruskal JB, et al. Liver transplantation in imaging in transplantation, Editor Bankier A Springer, 2008, 99–134.

    Google Scholar 

  26. Caiado AH, et al. Complications of liver transplantation: multimodality imaging approach. Radiographics. 2007;27(5):1401–17.

    Article  Google Scholar 

  27. Dani G, Sun RMM, Bennett AE. Imaging of liver transplant and its complications. Semin Ultrasound CT MRI. 2013;4:365–77.

    Article  Google Scholar 

  28. Quiroga S, Sebastia MC, Margarit C, et al. Complications of orthotopic liver transplantation: spectrum of findings with helical CT. Radiographics. 2001;21(1085–2201):72.

    Google Scholar 

  29. Itri JN, Heller TM, Tublin ME. Hepatic transplantation: postoperative complications. Abdom Imaging. 2013;38:1300–33.

    Article  Google Scholar 

  30. Camacho JC, et al. Nonvascular PostLiver transplantation complications: from US screening to crosssectional and interventional imaging. Radiographics. 2015;35:87–104.

    Article  Google Scholar 

  31. Catalano OA, et al. Biliary infections: spectrum of imaging findings and management. Radiographics. 2009;29(7):2059–80.

    Article  Google Scholar 

  32. Aberg F, Pukkala E, Höckerstedt K, Sankila R, Isoniemi H. Risk of malignant neoplasms after liver transplantation: a population-based study. Liver Transpl. 2008;14(10):1428–36.

    Article  Google Scholar 

  33. McCaughan GW, Vajdic CM. De novo malignant disease after liver transplantation? Risk and surveillance strategies. Liver Transpl. 2013;19(suppl 2):S62–7.

    Article  Google Scholar 

  34. Nakazawa T, Ohara H, Sano H, Ando T, Joh T. Schematic classification of sclerosing cholangitis with autoimmune pancreatitis by cholangiography. Pancreas. 2006;32(2):229.

    Article  Google Scholar 

  35. Lim JH, Yoon KH, Kim SH, et al. Intraductal papillary mucinous tumor of the bile ducts. Radiographics. 2004; 24(1):53–67. 3.

    Google Scholar 

  36. Kim JH, Kim TK, Eun HW, et al. CT findings of cholangiocarcinoma associated with recurrent pyogenic cholangitis. AJR Am J Roentgenol. 2006;187(6):1571–7.

    Article  Google Scholar 

  37. Chung YE, Kim M-J, Park YN. Varying appearances of cholangiocarcinoma: radiologic pathologic correlation. Radiographics. 2009;29:683–700.

    Article  Google Scholar 

  38. Shanbhogue AKS, Najla Fasih N, Surabhi VR, et al. A clinical and radiologic review of uncommon types and causes of pancreatitis. Radiographics. 2009;29:1003–26.

    Article  Google Scholar 

  39. Kim JK, Altun E, Elias J, et al. Focal pancreatic mass: distinction of pancreatic cancer from chronic pancreatitis using gadolinium-enhanced 3D-gradient-echo MRI. J Magn Reson Imaging. 2007;26:313–22.

    Article  Google Scholar 

  40. Ichikawa T, Sou H, Araki T, et al. Duct-penetrating sign at MRCP: usefulness for differentiating inflammatory pancreatic mass from pancreatic carcinomas. Radiology. 2001;221:107–16.

    Article  CAS  Google Scholar 

  41. Park HS, Lee JM, Choi JY, et al. Preoperative evaluation of bile duct cancer: MRI combined with MR cholangiopancreatography versus MDCT with direct cholangiography. AJR. 2008;190(2):396–405.

    Article  Google Scholar 

  42. Tajima Y, Kuroki T, Tsutsumi R, Kim T, et al. Pancreatic carcinoma coexisting with chronic pancreatitis versus tumor forming pancreatitis: diagnostic utility of the timesignal intensity curve from dynamic contrast-enhanced MR imaging. World J Gastroenterol. 2007;13:858–65.

    Article  Google Scholar 

  43. Leung TK, Lee CM, Wang FC, et al. Difficulty with diagnosis of malignant pancreatic neoplasms coexisting with chronic pancreatitis. World J Gastroenterol. 2005;11:5075–8.

    Article  Google Scholar 

  44. Chun YS, Milestone BN, Watson JC, et al. Defining venous involvement in borderline resectable pancreatic cancer. Ann Surg Oncol. 2010;17(11):2832–8.

    Article  Google Scholar 

  45. Morgan DE, Waggoner CN, Canon CL, et al. Resectability of pancreatic adenocarcinoma in patients with locally advanced disease downstaged by preoperative therapy: a challenge for MDCT. AJR. 2010;194(3):615–22.

    Article  Google Scholar 

  46. Cassinotto C, Cortade J, Belleannée G, et al. An evaluation of the accuracy of CT when determining resectability of pancreatic head adenocarcinoma after neoadjuvant treatment. Eur J Radiol. 2013;82(4):589–93.

    Article  Google Scholar 

  47. Hong SB, Lee SS, Kim JH, et al. Pancreatic cancer CT: prediction of resectability according to NCCN criteria. Radiology. 2018;289(3):710–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lupescu, I.G., Grasu, M.C. (2022). CT in Hepato-Bilio-Pancreatic Surgical Pathology. In: Makuuchi, M., et al. The IASGO Textbook of Multi-Disciplinary Management of Hepato-Pancreato-Biliary Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-0063-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0063-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0062-4

  • Online ISBN: 978-981-19-0063-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics