Skip to main content

Attaining State of the Art in DNA Tests

  • Chapter
  • First Online:
Handbook of DNA Forensic Applications and Interpretation

Abstract

In the early days of DNA testing, the most sensitive type of testing was via a process known as Restriction Fragment Length Polymorphism testing, or RFLP. In this type of testing, DNA was partially digested, or cut into pieces, by using a variety of enzymes that cleaves DNA at a certain runs base pair sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.ncbi.nlm.nih.gov/probe/docs/techrflp/.

  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551542/.

  3. https://www.hudsonalpha.org/the-genetics-of-eye-color/.

  4. https://www.nature.com/articles/nbt1486.

  5. https://medlineplus.gov/genetics/understanding/genomicresearch/snp/.

  6. Butler JM. The future of forensic DNA analysis. Philos Trans R Soc Lond B Biol Sci. 2015;370(1674):20140252. https://doi.org/10.1098/rstb.2014.0252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar, SA, Kashyap A. Investigating contributors of the mixed DNA samples by forensic bioinformatics; uncertainty to certainty for crime laboratories. In: 2013 15th International conference on advanced computing technologies (ICACT). 2013, pp. 1–8. https://doi.org/10.1109/ICACT.2013.6710508.

  8. Isfahani SS, Khajouei R, Jahanbakhsh M, Mirmohamadi M. The evaluation of hospital laboratory information management systems based on the standards of the American National Standard Institute. J Educ Health Promot. 2014;3:61. Published 2014 Jun 23. https://doi.org/10.4103/2277-9531.134769.

  9. Chen Y, Lin Y, Yuan X, Shen B. LIMS and clinical data management. Adv Exp Med Biol. 2016;939:225–39. https://doi.org/10.1007/978-981-10-1503-8_9. (PMID: 27807749).

  10. Nuzzolese E, Marcario V, Di Vella G. Incorporation of radio frequency identification tag in dentures to facilitate recognition and forensic human identification. Open Dent J. 2010;4:33–6. Published 2010 Apr 29. https://doi.org/10.2174/1874210601004010033.

  11. Kabachinski J. An introduction to RFID. Biomed Instrum Technol. 2005;39(2):131–4.

    Article  Google Scholar 

  12. Jain AK, Ross A. Bridging the gap: from biometrics to forensics. Philos Trans R Soc Lond B Biol Sci. 2015;370(1674):20140254. https://doi.org/10.1098/rstb.2014.0254.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bouchaud F, et al. IoT forensic: identification and classification of evidence in criminal investigations. In: Research gate, conference paper: conference: the 13th international conference, Aug 2018.

    Google Scholar 

  14. Nieto A, Rios R, Lopez J. IoT-forensics meets privacy: towards cooperative digital investigations. Sensors (Basel). 2018 Feb 7;18(2):492. https://doi.org/10.3390/s18020492. PMID: 29414864; PMCID: PMC5856102.

  15. Baerncopf J, Hutches K. A review of modern challenges in fire debris analysis. Forensic Sci Int. 2014 Nov;244:e12-20. https://doi.org/10.1016/j.forsciint.2014.08.006. (Epub 2014 Aug 17. PMID: 25193144).

  16. Lu X, Xu Z, Niu QS, Tu Z. Application of touch DNA in investigation practice. Fa Yi Xue Za Zhi. 2018 Jun;34(3):294–98. Chinese. https://doi.org/10.12116/j.issn.1004-5619.2018.03.015. (Epub 2018 Jun 25. PMID: 30051670).

  17. Marshall PL, et al. Improved tools for the robust analysis of low copy number and challenged DNA samples, Jul 2014, U.S. Department of Justice.

    Google Scholar 

  18. Kroneis T, et al. Global preamplification simplifes targeted mRNA quantification. Sci Rep. 2017;7:45219. https://doi.org/10.1038/srep45219.

  19. Forensic DNA analysis of challenging samples. Thermofisher. https://www.thermofisher.com/in/en/home/industrial/forensics/human-identification/forensic-dna-analysis/dna-analysis/challenging-samples.html.

  20. Shih S, et al. Applications of probe capture enrichment next generation sequencing for whole mitochondrial genome and 426 nuclear SNPs for forensically challenging samples. Genes. 2018;9(2):49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Huffine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huffine, E., Kumar, A., Kashyap, A. (2022). Attaining State of the Art in DNA Tests. In: Kumar, A., Goswami, G.K., Huffine, E. (eds) Handbook of DNA Forensic Applications and Interpretation . Springer, Singapore. https://doi.org/10.1007/978-981-19-0043-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0043-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0042-6

  • Online ISBN: 978-981-19-0043-3

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics