Skip to main content

Diabetic and Nephropathy

  • Chapter
  • First Online:
Advances in Diabetes Research and Management

Abstract

Recently, several genes that predispose to type 2 diabetes have been discovered. There is ample evidence to indicateĀ a genetic predisposition to the microvascular complication of nephropathy in people with both type 1 and type 2 diabetes, in addition to the well-known and potent effects of environmental variables. In populations all over the world, familial aggregation of phenotypes such as end-stage renal disease, albuminuria, and chronic kidney disease has frequently been recorded. Heritability estimations for albuminuria and glomerular filtration rate also show considerable influences from inherited variables. Recent genome-wide linkage analyses have examined positional candidate genes under numerous chromosomal areas that are more likely to contain genes that increase the risk of developing diabetic nephropathy. The hereditary elements of diabetic kidney disease are reviewed in this book chapter, with a focus on recently identified genes and pathways. It appears likely that inheriting risk alleles at numerous susceptibility loci, in the presence of hyperglycemia, increases the risk for diabetes-associated kidney damage. In contrast to the molecular genetic studies, which have already been fully reviewed elsewhere, this book chapter focuses on the gathered data on hereditary factors from family studies in order to assess the role of genetic vulnerability in diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, A. I., Stevens, R. J., Manley, S. E., Bilous, R. W., Cull, C. A., Holman, R. R., & UKPDS Group. (2003). Development and progression of nephropathy in type 2 diabetes: The United Kingdom prospective diabetes study (UKPDS 64). Kidney International, 63(1), 225ā€“232.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ahluwalia, T. S., Khullar, M., Ahuja, M., Kohli, H. S., Bhansali, A., Mohan, V., Venkatesan, R., Rai, T. S., Sud, K., & Singal, P. K. (2009). Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One, 4(4), e5168.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Alter, M. L., Ott, I. M., Von Websky, K., Tsuprykov, O., Sharkovska, Y., Krause-Relle, K., Raila, J., Henze, A., Klein, T., & Hocher, B. (2012). DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney and Blood Pressure Research, 36(1), 119ā€“130.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Altshuler, D., Daly, M. J., & Lander, E. S. (2008). Genetic mapping in human disease. Science, 322(5903), 881ā€“888.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Alvarez, M. L., & DiStefano, J. K. (2011). Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One, 6(4), e18671.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Alvarez, M. L., Khosroheidari, M., Eddy, E., & Kiefer, J. (2013). Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One, 8(10), e77468.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • American Diabetes Association. (2004). Nephropathy in diabetes (position statement). Diabetes Care, 27, 79ā€“83.

    ArticleĀ  Google ScholarĀ 

  • American Diabetes Association. (2017). 10. Microvascular complications and foot care. Diabetes Care, 40, S88ā€“S98.

    ArticleĀ  Google ScholarĀ 

  • Amore, A., Cirina, P., Conti, G., Cerutti, F., Bagheri, N., Emancipator, S. N., & Coppo, R. (2004). Amadori-configurated albumin induces nitric oxide-dependent apoptosis of endothelial cells: A possible mechanism of diabetic vasculopathy. Nephrology Dialysis Transplantation, 19(1), 53ā€“60.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Arif, E., & Nihalani, D. (2013). Glomerular filtration barrier assembly: An insight. Postdoc Journal: A Journal of Postdoctoral Research and Postdoctoral Affairs, 1(4), 33.

    PubMedĀ  Google ScholarĀ 

  • Asakimori, Y., Yorioka, N., Taniguchi, Y., Ito, T., Ogata, S., Kyuden, Y., & Kohno, N. (2002). T-786ā†’C polymorphism of the endothelial nitric oxide synthase gene influences the progression of renal disease. Nephron, 91(4), 747ā€“751.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Babel, N., Gabdrakhmanova, L., Hammer, M. H., et al. (2006). Predictive value of cytokine gene polymorphisms for the development of end-stage renal disease. Journal of Nephrology, 19(6), 802ā€“807.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Barbour, S. J., Er, L., Djurdjev, O., Karim, M., & Levin, A. (2010). Differences in progression of CKD and mortality amongst Caucasian, oriental Asian and South Asian CKD patients. Nephrology Dialysis Transplantation, 25(11), 3663ā€“3672.

    ArticleĀ  Google ScholarĀ 

  • Barrett, J. C., Hansoul, S., Nicolae, D. L., Cho, J. H., Duerr, R. H., Rioux, J. D., Brant, S. R., Silverberg, M. S., Taylor, K. D., Barmada, M. M., & Bitton, A. (2008). Genome-wide association defines more than 30 distinct susceptibility loci for Crohnā€™s disease. Nature Genetics, 40(8), 955ā€“962.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bilous, R. W. (1997). The pathology of diabetic nephropathy. In K. Alberti, P. Zimmet, R. A. DeFronzo, & H. Keen (Eds.), International textbook of diabetes mellitus (pp. 1349ā€“1362). Wiley.

    Google ScholarĀ 

  • Bonventre, J. V. (2012). Can we target tubular damage to prevent renal function decline in diabetes. Seminars in Nephrology, 32(5), 452ā€“462.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Boright, A. P., Paterson, A. D., Mirea, L., Bull, S. B., Mowjoodi, A., Scherer, S. W., Zinman, B., & DCCT/EDIC Research Group. (2005). Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: The DCCT/EDIC Genetics Study. Diabetes, 54(4), 1238ā€“1244.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bottazzi, B., Inforzato, A., Messa, M., Barbagallo, M., Magrini, E., Garlanda, C., & Mantovani, A. (2016). The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. Journal of Hepatology, 64(6), 1416ā€“1427.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brennan, E., McEvoy, C., Sadlier, D., Godson, C., & Martin, F. (2013). The genetics of diabetic nephropathy. Genes, 4(4), 596ā€“619.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813ā€“820.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P., & Cerami, A. (1986). Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science, 232(4758), 1629ā€“1632.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Buraczynska, M., Zukowski, P., Ksiazek, P., Kuczmaszewska, A., Janicka, J., & Zaluska, W. (2014). Transcription factor 7-like 2 (TCF7L2) gene polymorphism and clinical phenotype in end-stage renal disease patients. Molecular Biology Reports, 41(6), 4063ā€“4068.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Burden, A. C., McNally, P. C., Feehally, J., & Walls, J. (1992). Increased incidence of end-stage renal failure secondary to diabetes mellitus in Asian ethnic groups in the United Kingdom. Diabetic Medicine, 9(7), 641ā€“645.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Carmo, R. F., Aroucha, D., Vasconcelos, L. R., Pereira, L. M., Moura, P., & Cavalcanti, M. S. (2016). Genetic variation in PTX 3 and plasma levels associated with hepatocellular carcinoma in patients with HCV. Journal of Viral Hepatitis, 23(2), 116ā€“122.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chalasova, K., Dvorakova, V., Pacal, L., Bartakova, V., Brozova, L., Jarkovsky, J., & Kankova, K. (2014). NOS3 894G>T polymorphism is associated with progression of kidney disease and cardiovascular morbidity in type 2 diabetic patients: NOS3 as a modifier gene for diabetic nephropathy? Kidney and Blood Pressure Research, 38(1), 92ā€“98.

    Google ScholarĀ 

  • Chan, Y., Lim, E. T., Sandholm, N., Wang, S. R., AJ, M. K., Ripke, S., Daly, M. J., Neale, B. M., Salem, R. M., Hirschhorn, J. N., & DIAGRAM Consortium. (2014). An excess of risk increasing low-frequency variants can be a signal of polygenic inheritance in complex diseases. The American Journal of Human Genetics, 94(3), 437ā€“452.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chawla, T., Sharma, D., & Singh, A. (2010). Role of the renin angiotensin system in diabetic nephropathy. World Journal of Diabetes, 1(5), 141.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cheung, V. G., & Spielman, R. S. (2009). Genetics of human gene expression: Mapping DNA variants that influence gene expression. Nature Reviews Genetics, 10(9), 595ā€“604.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chiarelli, F., Gaspari, S., & Marcovecchio, M. L. (2009). Role of growth factors in diabetic kidney disease. Hormone and Metabolic Research, 41(08), 585ā€“593.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Choe, E. Y., Wang, H. J., Kwon, O., Kim, K. J., Kim, B. S., Lee, B. W., Ahn, C. W., Cha, B. S., Lee, H. C., Kang, E. S., & Mantzoros, C. S. (2013). Variants of the adiponectin gene and diabetic microvascular complications in patients with type 2 diabetes. Metabolism, 62(5), 677ā€“685.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Christ, M., Bauersachs, J., Liebetrau, C., Heck, M., GĆ¼nther, A., & Wehling, M. (2002). Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD (P) H oxidase activation: Attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin. Diabetes, 51(8), 2648ā€“2652.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chung, H. F., Long, K. Z., Hsu, C. C., Al Mamun, A., Chiu, Y. F., Tu, H. P., Chen, P. S., Jhang, H. R., Hwang, S. J., & Huang, M. C. (2014). Adiponectin gene (ADIPOQ) polymorphisms correlate with the progression of nephropathy in Taiwanese male patients with type 2 diabetes. Diabetes Research and Clinical Practice, 105(2), 261ā€“270.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cilingir, V., Donder, A., Milanlioğlu, A., Yilgƶr, A., & Tombul, T. (2019). Association between endothelial nitric oxide synthase polymorphisms T786C and G894T and ischaemic stroke. Eastern Journal of Medicine, 24(4), 472ā€“477.

    ArticleĀ  Google ScholarĀ 

  • Clarke, P., Gray, A., Legood, R., Briggs, A., & Holman, R. (2003). The impact of diabetes-related complications on healthcare costs: Results from the United Kingdom prospective diabetes study (UKPDS Study No. 65). Diabetic Medicine, 20(6), 442ā€“450.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cohen, R. M., Holmes, Y. R., Chenier, T. C., & Joiner, C. H. (2003). Discordance between HbA1c and fructosamine: Evidence for a glycosylation gap and its relation to diabetic nephropathy. Diabetes Care, 26(1), 163ā€“167.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Colombo, M. G., Andreassi, M. G., Paradossi, U., Botto, N., Manfredi, S., Masetti, S., Rossi, G., Clerico, A., & Biagini, A. (2002). Evidence for association of a common variant of the endothelial nitric oxide synthase gene (Glu298ā†’Asp polymorphism) to the presence, extent, and severity of coronary artery disease. Heart, 87(6), 525ā€“528.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cooke, G. S., Campbell, S. J., Bennett, S., Lienhardt, C., McAdam, K. P., Sirugo, G., Sow, O., Gustafson, P., Mwangulu, F., van Helden, P., & Fine, P. (2008). Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. American Journal of Respiratory and Critical Care Medicine, 178(2), 203ā€“207.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Daly, A. K., & Day, C. P. (2001). Candidate gene case-control association studies: Advantages and potential pitfalls. British Journal of Clinical Pharmacology, 52(5), 489ā€“499.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Deshmukh, H. A., Palmer, C. N., Morris, A. D., & Colhoun, H. M. (2013). Investigation of known estimated glomerular filtration rate loci in patients with type 2 diabetes. Diabetic Medicine, 30(10), 1230ā€“1235.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Diamond, J. M., Meyer, N. J., Feng, R., Rushefski, M., Lederer, D. J., Kawut, S. M., Lee, J. C., Cantu, E., Shah, R. J., Lama, V. N., & Bhorade, S. (2012). Variation in PTX3 is associated with primary graft dysfunction after lung transplantation. American Journal of Respiratory and Critical Care Medicine, 186(6), 546ā€“552.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dreyer, G., Hull, S., Aitken, Z., Chesser, A., & Yaqoob, M. M. (2009). The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJM: An International Journal of Medicine, 102(4), 261ā€“269.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Drummond, K., & Mauer, M. (2002). The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes, 51(5), 1580ā€“1587.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Duran-Salgado, M. B., & Rubio-Guerra, A. F. (2014). Diabetic nephropathy and inflammation. World Journal of Diabetes, 5(3), 393.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ellis, J. W., Chen, M. H., Foster, M. C., Liu, C. T., Larson, M. G., de Boer, I., Kƶttgen, A., Parsa, A., Bochud, M., Bƶger, C. A., & Kao, L. (2012). Validated SNPs for eGFR and their associations with albuminuria. Human Molecular Genetics, 21(14), 3293ā€“3298.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ewens, K. G., George, R. A., Sharma, K., Ziyadeh, F. N., & Spielman, R. S. (2005). Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes, 54(11), 3305ā€“3318.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fakhruddin, S., Alanazi, W., & Jackson, K. E. (2017). Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. Journal of Diabetes Research.

    Google ScholarĀ 

  • Feng, B. J., Goldgar, D. E., & Corbex, M. (2007). Trend-TDT ā€“ A transmission/disequilibrium based association test on functional mini/microsatellites. BMC Genetics, 8(1), 1ā€“8.

    ArticleĀ  Google ScholarĀ 

  • Fioretto, P., & Mauer, M. (2007). Histopathology of diabetic nephropathy. Seminars in Nephrology, 195ā€“207.

    Google ScholarĀ 

  • Fogarty, D. G., Rich, S. S., Hanna, L., Warram, J. H., & Krolewski, A. S. (2000). Urinary albumin excretion in families with type 2 diabetes is heritable and genetically correlated to blood pressure. Kidney International, 57(1), 250ā€“257.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137ā€“188.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Forbes, J. M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D. M., Vasan, S., Wagle, D., Jerums, G., & Cooper, M. E. (2001). Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia, 44(1), 108ā€“114.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fu, L. L., Lin, Y., Yang, Z. L., & Yin, Y. B. (2012). Association analysis of genetic polymorphisms of TCF7L2, CDKAL1, SLC30A8, HHEX genes and microvascular complications of type 2 diabetes mellitus. Chinese Journal of Medical Genetics., 29(2), 194ā€“199.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Geraldes, P., & King, G. L. (2010). Activation of protein kinase C isoforms and its impact on diabetic complications. Circulation Research, 106(8), 1319ā€“1331.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Goyal, R. K., Shah, V. N., Saboo, B. D., Phatak, S. R., Shah, N. N., Gohel, M. C., Raval, P. B., & Patel, S. S. (2010). Prevalence of overweight and obesity in Indian adolescent school going children: Its relationship with socioeconomic status and associated lifestyle factors. The Journal of the Association of Physicians of India, 58, 151ā€“158.

    PubMedĀ  Google ScholarĀ 

  • Graham, M., & Adams, J. M. (1986). Chromosome 8 breakpoint far 3ā€² of the c-myc oncogene in a Burkitt's lymphoma 2; 8 variant translocation is equivalent to the murine pvt-1 locus. The EMBO Journal, 5(11), 2845ā€“2851.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gray, L. J., Tringham, J. R., Davies, M. J., Webb, D. R., Jarvis, J., Skinner, T. C., Farooqi, A. M., & Khunti, K. (2010). Screening for type 2 diabetes in a multiethnic setting using known risk factors to identify those at high risk: A cross-sectional study. Vascular Health and Risk Management, 6, 837.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Guan, Y., Kuo, W. L., Stilwell, J. L., Takano, H., Lapuk, A. V., Fridlyand, J., Mao, J. H., Yu, M., Miller, M. A., Santos, J. L., & Kalloger, S. E. (2007). Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clinical Cancer Research, 13(19), 5745ā€“5755.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ha, H., & Lee, H. B. (2000). Reactive oxygen species as glucose signalling molecules in mesangial cells cultured under high glucose. Kidney International, 58, 19ā€“25.

    ArticleĀ  Google ScholarĀ 

  • Haneda, M., Koya, D., Isono, M., & Kikkawa, R. (2003). Overview of glucose signaling in mesangial cells in diabetic nephropathy. Journal of the American Society of Nephrology, 14(5), 1374ā€“1382.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hanson, R. L., Craig, D. W., Millis, M. P., Yeatts, K. A., Kobes, S., Pearson, J. V., Lee, A. M., Knowler, W. C., Nelson, R. G., & Wolford, J. K. (2007). Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes, 56(4), 975ā€“983.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harrison, D. G., Cai, H., Landmesser, U., & Griendling, K. K. (2003). Interactions of angiotensin II with NAD (P) H oxidase, oxidant stress and cardiovascular disease. Journal of the Renin-Angiotensin-Aldosterone System: JRAAS, 4(2), 51ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Heilig, C. W., Concepcion, L. A., Riser, B. L., Freytag, S. O., Zhu, M., & Cortes, P. (1995). Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. The Journal of Clinical Investigation, 96(4), 1802ā€“1814.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Holtzman, N. A., & Marteau, T. M. (2000). Will genetics revolutionize medicine. New England Journal of Medicine, 343(2), 141ā€“144.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hostetter, T. H. (2003). Hyperfiltration and glomerulosclerosis. Seminars in Nephrology, 23(2), 194ā€“199.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Imperatore, G., Hanson, R. L., Pettitt, D. J., Kobes, S., Bennett, P. H., & Knowler, W. C. (1998). Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes, 47(5), 821ā€“830.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ito, A., Uriu, K., Inada, Y., Qie, Y. L., Takagi, I., Ikeda, M., Hashimoto, O., Suzuka, K., Eto, S., Tanaka, Y., & Kaizu, K. (2001). Inhibition of neuronal nitric oxide synthase ameliorates renal hyper filtration in streptozotocin-induced diabetic rat. Journal of Laboratory and Clinical Medicine, 138(3), 177ā€“185.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jacobsen, P. K. (2005). Preventing end stage renal disease in diabetic patientsā€”Genetic aspect (part I). Journal of the Renin-Angiotensin-Aldosterone System, 6(1), 1ā€“14.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Karter, A. J., Ferrara, A., Liu, J. Y., Moffet, H. H., Ackerson, L. M., & Selby, J. V. (2002). Ethnic disparities in diabetic complications in an insured population. Journal of the American Medical Association, 287(19), 2519ā€“2527.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kim, J. H., Shin, H. D., Park, B. L., Moon, M. K., Cho, Y. M., Hwang, Y. H., Oh, K. W., Kim, S. Y., Lee, H. K., Ahn, C., & Park, K. S. (2006). SLC12A3 (solute carrier family 12 member [sodium/chloride] 3) polymorphisms are associated with end-stage renal disease in diabetic nephropathy. Diabetes, 55(3), 843ā€“848.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kimmelstiel, P., & Wilson, C. (1936). Intercapillary lesions in the glomeruli of the kidney. The American Journal of Pathology, 12(1), 83.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kramer, H. J., Nguyen, Q. D., Curhan, G., & Hsu, C. Y. (2003). Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. Journal of the American Medical Association, 289(24), 3273ā€“3277.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Lin, J. S., & Susztak, K. (2016). Podocytes: The weakest link in diabetic kidney disease. Current Diabetes Reports, 16(5), 1ā€“9.

    ArticleĀ  Google ScholarĀ 

  • Lin, G., Wang, Z., Wang, L., Lau, Y. L., & Yang, W. (2008). Identification of linked regions using high-density SNP genotype data in linkage analysis. Bioinformatics, 24(1), 86ā€“93.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu, R., Lee, K., & He, J. C. (2015). Genetics and epigenetics of diabetic nephropathy. Kidney Diseases, 1(1), 42ā€“51.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • MacIsaac, R. J., Jerums, G., & Ekinci, E. I. (2017). Effects of glycaemic management on diabetic kidney disease. World Journal of Diabetes, 8(5), 172.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Magee, C., Grieve, D. J., Watson, C. J., & Brazil, D. P. (2017). Diabetic nephropathy: A tangled web to unweave. Cardiovascular Drugs and Therapy, 31(5ā€“6), 579ā€“592.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mclennan, S. V., Fisher, E., Martell, S. Y., Death, A. K., Williams, P. F., Lyons, J. G., & Yue, D. K. (2000). Effects of glucose on matrix metalloproteinase and plasmin activities in mesangial cells: Possible role in diabetic nephropathy. Kidney International, 58, 81ā€“87.

    ArticleĀ  Google ScholarĀ 

  • Millis, M. P., Bowen, D., Kingsley, C., Watanabe, R. M., & Wolford, J. K. (2007). Variants in the plasmacytoma variant translocation gene (PVT1) are associated with end-stage renal disease attributed to type 1 diabetes. Diabetes, 56(12), 3027ā€“3032.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mishra, R., Emancipator, S. N., Kern, T., & Simonson, M. S. (2005). High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney International, 67(1), 82ā€“93.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mohan, V., Shanthirani, C. S., & Deepa, R. (2003). Glucose intolerance (diabetes and IGT) in a selected South Indian population with special reference to family history, obesity and lifestyle factors: The Chennai Urban Population Study (CUPS 14). The Journal of the Association of Physicians of India., 51, 771ā€“777.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Mohan, V., Sandeep, S., Deepa, R., Shah, B., & Varghese, C. (2007). Epidemiology of type 2 diabetes: Indian scenario. The Indian Journal of Medical Research, 125(3), 217ā€“230.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Molitch, M. E., DeFronzo, R. A., Franz, M. J., & Keane, W. F. (2004). Nephropathy in diabetes. Diabetes Care, 27, 79.

    ArticleĀ  Google ScholarĀ 

  • Mƶllsten, A., Vionnet, N., Forsblom, C., Parkkonen, M., Tarnow, L., Hadjadj, S., Marre, M., Parving, H. H., & Groop, P. H. (2011). A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women. Molecular Genetics and Metabolism, 103(1), 66ā€“70.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Mooyaart, A. L., Valk, E. J., van Es, L. A., Bruijn, J. A., de Heer, E., Freedman, B. I., Dekkers, O. M., & Baelde, H. J. (2011). Genetic associations in diabetic nephropathy: A meta-analysis. Diabetologia, 54(3), 544ā€“553.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nakagawa, T., Sato, W., Glushakova, O., Heinig, M., Clarke, T., Campbell-Thompson, M., Yuzawa, Y., Atkinson, M. A., Johnson, R. J., & Croker, B. (2007). Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. Journal of the American Society of Nephrology, 18(2), 539ā€“550.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Narang, A., Roy, R. D., Chaurasia, A., Mukhopadhyay, A., Mukerji, M., Dash, D., & Indian Genome Variation Consortium. (2010). IGVBrowserā€“A genomic variation resource from diverse Indian populations. Database.

    Google ScholarĀ 

  • Nazar, C. M. (2014). Diabetic nephropathy; principles of diagnosis and treatment of diabetic kidney disease. Journal of Nephropharmacology, 3(1), 15.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nelson, R. G., Newman, J. M., Knowler, W. C., Sievers, M. L., Kunzelman, C. L., Pettitt, D. J., Moffett, C. D., Teutsch, S. M., & Bennett, P. H. (1988). Incidence of end-stage renal disease in type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia, 31(10), 730ā€“736.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nishi, S., Ueno, M., Hisaki, S., et al. (2000). Ultrastructural characteristics of diabetic nephropathy. Medical Electron Microscopy, 33, 65ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nishikawa, T., Edelstein, D., & Brownlee, M. (2000). The missing link: A single unifying mechanism for diabetic complications. Kidney International, 58, 26ā€“30.

    ArticleĀ  Google ScholarĀ 

  • Nitta, K., Okada, K., Yanai, M., & Takahashi, S. (2013). Aging and chronic kidney disease. Kidney and Blood Pressure Research, 38(1), 109ā€“120.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Noiri, E., Satoh, H., Taguchi, J. I., Brodsky, S. V., Nakao, A., Ogawa, Y., Nishijima, S., Yokomizo, T., Tokunaga, K., & Fujita, T. (2002). Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension, 40(4), 535ā€“540.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nomiyama, T., Tanaka, Y., Piao, L., Nagasaka, K., Sakai, K., Ogihara, T., Nakajima, K., Watada, H., & Kawamori, R. (2003). The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients. Journal of Human Genetics, 48(3), 138ā€“141.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Olesen, R., Wejse, C., Velez, D. R., Bisseye, C., Sodemann, M., Aaby, P., Rabna, P., Worwui, A., Chapman, H., Diatta, M., & Adegbola, R. A. (2007). DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes & Immunity, 6, 456ā€“467.

    ArticleĀ  Google ScholarĀ 

  • Parving, H. H., Mauer, M., Fioretto, P., Rossing, P., & Ritz, E. (2011). Diabetic nephropathy. In Brenner and Rectorā€™s the Kidney. WB Saunders Company.

    Google ScholarĀ 

  • Patnala, R., Clements, J., & Batra, J. (2013). Candidate gene association studies: A comprehensive guide to useful in silico tools. BMC Genetics, 14(1), 1ā€“1.

    ArticleĀ  Google ScholarĀ 

  • Pezzolesi, M. G., Poznik, G. D., Mychaleckyj, J. C., Paterson, A. D., Barati, M. T., Klein, J. B., Ng, D. P., Placha, G., Canani, L. H., Bochenski, J., & Waggott, D. (2009). Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes, 58(6), 1403ā€“1410.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Placha, G., Canani, L. H., Warram, J. H., & Krolewski, A. S. (2005). Evidence for different susceptibility genes for proteinuria and ESRD in type 2 diabetes. Advances in Chronic Kidney Disease, 12(2), 155ā€“169.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Prasad, P., Tiwari, A. K., Kumar, K. P., Ammini, A. C., Gupta, A., Gupta, R., & Thelma, B. K. (2007). Association of TGFĪ²1, TNFĪ±, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Medical Genetics, 8(1), 20.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pugh, J. A., Stern, M. P., Haffner, S. M., Eifler, C. W., & Zapata, M. (1988). Excess incidence of treatment of end-stage renal disease in Mexican Americans. American Journal of Epidemiology, 127(1), 135ā€“144.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Qian, Y., Feldman, E., Pennathur, S., Kretzler, M., & Brosius, F. C. (2008). From fibrosis to sclerosis: Mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes, 57(6), 1439ā€“1445.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ramadan, R. A., Zaki, A. M., Magour, G. M., Zaki, M. A., Aglan, S. A., Madkour, M. A., & Shamseya, M. M. (2016). Association of XbaI GLUT1 polymorphism with susceptibility to type 2 diabetes mellitus and diabetic nephropathy. American Journal of Molecular Biology, 6, 71ā€“78.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ravikumar, P., Bhansali, A., Walia, R., Shanmugasundar, G., & Ravikiran, M. (2011). Alterations in HbA1c with advancing age in subjects with normal glucose tolerance: Chandigarh Urban Diabetes Study (CUDS). Diabetic Medicine, 28(5), 590ā€“594.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Reeves, W. B., & Andreoli, T. E. (2000). Transforming growth factor Ī² contributes to progressive diabetic nephropathy. Proceedings of the National Academy of Sciences, 97(14), 7667ā€“7669.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., & Shaw, J. E. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas. Diabetes Research and Clinical Practice, 157, 107843.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Santos, K. G., Crispim, D., Canani, L. H., Ferrugem, P. T., Gross, J. L., & Roisenberg, I. (2011). Association of eNOS gene polymorphisms with renal disease in Caucasians with type 2 diabetes. Diabetes Research and Clinical Practice, 91(3), 353ā€“362.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Satchell, S. C., & Tooke, J. E. (2008). What is the mechanism of microalbuminuria in diabetes: A role for the glomerular endothelium. Diabetologia, 51(5), 714ā€“725.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Satirapoj, B., Tasanavipas, P., & Supasyndh, O. (2019). Role of TCF7L2 and PPARG2 gene polymorphisms in renal and cardiovascular complications among patients with type 2 diabetes: A cohort study. Kidney Diseases, 5(4), 220ā€“227.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Seman, N. A., He, B., Ojala, J. R., Mohamud, W. N., Ɩstenson, C. G., Brismar, K., & Gu, H. F. (2014). Genetic and biological effects of sodium-chloride cotransporter (SLC12A3) in diabetic nephropathy. American Journal of Nephrology, 40(5), 408ā€“416.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Sharma, K., Deelman, L., Madesh, M., Kurz, B., Ciccone, E., Siva, S., Hu, T., Zhu, Y., Wang, L., Henning, R., & Ma, X. (2003). Involvement of transforming growth factor-Ī² in regulation of calcium transients in diabetic vascular smooth muscle cells. American Journal of Physiology-Renal Physiology, 285(6), 258ā€“270.

    ArticleĀ  Google ScholarĀ 

  • Shaw, P. K., Baboe, F., van Es, L. A., van der Vijver, J. C., van de Ree, M. A., de Jonge, N., & Rabelink, T. J. (2006). South-Asian type 2 diabetic patients have higher incidence and faster progression of renal disease compared with Dutch-European diabetic patients. Diabetes Care, 29(6), 1383ā€“1385.

    ArticleĀ  Google ScholarĀ 

  • Shaza, A. M., Rozina, G., Izham, M. M., & Azhar, S. S. (2005). Dialysis for end stage renal disease: A descriptive study in Penang Hospital. Medical Journal of Malaysia, 60(3), 320.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sheetz, M. J., & King, G. L. (2002). Molecular understanding of hyperglycemiaā€™s adverse effects for diabetic complications. Journal of the American Medical Association, 288(20), 2579ā€“2588.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., Boutin, P., Vincent, D., Belisle, A., Hadjadj, S., & Balkau, B. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445(7130), 881ā€“885.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Smith, M. W., Patterson, N., Lautenberger, J. A., Truelove, A. L., McDonald, G. J., Waliszewska, A., Kessing, B. D., Malasky, M. J., Scafe, C., Le, E., & De Jager, P. L. (2004). A high density admixture map for disease gene discovery in African Americans. The American Journal of Human Genetics, 74(5), 1001ā€“1013.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Speeckaert, M. M., Speeckaert, R., Carrero, J. J., Vanholder, R., & Delanghe, J. R. (2013). Biology of human pentraxin 3 (PTX3) in acute and chronic kidney disease. Journal of Clinical Immunology, 33(5), 881ā€“890.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Srivastava, S. K., Ramana, K. V., & Bhatnagar, A. (2005). Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocrine Reviews, 26(3), 380ā€“392.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sugimoto, H., Shikata, K., Matsuda, M., Kushiro, M., Hayashi, Y., Hiragushi, K., Wada, J., & Makino, H. (1998). Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyper filtration of diabetic nephropathy. Diabetologia, 41(12), 1426ā€“1434.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Syed, R., Biyabani, M. U., Prasad, S., Deeba, F., & Jamil, K. (2011). Evidence of association of a common variant of the endothelial nitric oxide synthase gene (Glu298 Asp polymorphism) to coronary artery disease in South Indian population. Journal of Medical Genetics and Genomics, 3(1), 13ā€“18.

    CASĀ  Google ScholarĀ 

  • Tandon, N., Anjana, R. M., Mohan, V., Kaur, T., Afshin, A., Ong, K., Mukhopadhyay, S., Thomas, N., Bhatia, E., Krishnan, A., & Mathur, P. (2018). The increasing burden of diabetes and variations among the states of India: The Global Burden of Disease Study 1990ā€“2016. The Lancet Global Health, 6(12), 1352ā€“1362.

    ArticleĀ  Google ScholarĀ 

  • Tang, Z. H., Zeng, F., & Zhang, X. Z. (2015). Human genetics of diabetic nephropathy. Renal Failure, 37(3), 363ā€“371.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Teumer, A., Tin, A., Sorice, R., Gorski, M., Yeo, N. C., Chu, A. Y., Li, M., Li, Y., Mijatovic, V., Ko, Y. A., & Taliun, D. (2016). Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. Diabetes, 65(3), 803ā€“817.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Thomson, S. C., Vallon, V., & Blantz, R. C. (2004). Kidney function in early diabetes: The tubular hypothesis of glomerular filtration. American Journal of Physiology-Renal Physiology, 286(1), F8ā€“F15.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tiongco, R. E., Aguas, I. S., Cabrera, F. J., Catacata, M., Flake, C. C., Manao, M. A., & Policarpio, A. (2020). The role of the TNF-Ī± gene -308 G/A polymorphism in the development of diabetic nephropathy: An updated meta-analysis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(6), 2123ā€“2129. https://doi.org/10.1016/j.dsx.2020.10.032

    ArticleĀ  Google ScholarĀ 

  • Unnikrishnan, R., Rema, M., Pradeepa, R., Deepa, M., Shanthirani, C. S., Deepa, R., & Mohan, V. (2007). Prevalence and risk factors of diabetic nephropathy in an urban South Indian population: The Chennai Urban Rural Epidemiology Study (CURES 45). Diabetes Care, 30(8), 2019ā€“2024.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Uzun, S., Ozari, M., Gursu, M., Karadag, S., Behlul, A., Sari, S., Koldas, M., Demir, S., Karaali, Z., & Ozturk, S. (2016). Changes in the inflammatory markers with advancing stages of diabetic nephropathy and the role of pentraxin-3. Renal Failure, 38(8), 1193ā€“1198.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Valladares-Salgado, A. D., Angeles-MartĆ­nez, J. A., Rosas, M., GarcĆ­a-Mena, J. A., Utrera-Barillas, D. O., GĆ³mez-DĆ­az, R. I., Escobedo-De La PeƱa, J. O., Parra, E. J., & Cruz, M. (2010). Association of polymorphisms within the transforming growth factor-Ī²1 gene with diabetic nephropathy and serum cholesterol and triglyceride concentrations. Nephrology, 15(6), 644ā€“648.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vallon, V., & Komers, R. (2011). Pathophysiology of the diabetic kidney. Comprehensive Physiology, 1(3), 1175ā€“1232.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Varghese, S., & Kumar, S. G. (2022). Role of eNOS and TGFĪ²1 gene polymorphisms in the development of diabetic nephropathy in type 2 diabetic patients in South Indian population. Egyptian Journal of Medical Human Genetics, 23(1), 10.

    ArticleĀ  Google ScholarĀ 

  • Veelken, R., Hilgers, K. F., Hartner, A., Haas, A., & BƖHMER KP, Sterzel RB. (2000). Nitric oxide synthase isoforms and glomerular hyper filtration in early diabetic nephropathy. Journal of the American Society of Nephrology, 11(1), 71ā€“79.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vionnet, N., TregouĆ«t, D., Kazeem, G., Gut, I., Groop, P. H., Tarnow, L., Parving, H. H., Hadjadj, S., Forsblom, C., Farrall, M., & Gauguier, D. (2006). Analysis of 14 candidate genes for diabetic nephropathy on chromosome 3q in European populations: Strongest evidence for association with a variant in the promoter region of the adiponectin gene. Diabetes, 55(11), 3166ā€“3174.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vithian, K., & Hurel, S. (2010). Microvascular complications: Pathophysiology and management. Clinical Medicine, 10(5), 505.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Watanabe, Y., Kinoshita, A., Yamada, T., Ohta, T., Kishino, T., Matsumoto, N., Ishikawa, M., Niikawa, N., & Yoshiura, K. I. (2002). A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-Ī²1 (TGF-Ī²1) and its signaling pathway. Journal of Human Genetics, 47(9), 478ā€“483.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wautier, M. P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., & Wautier, J. L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology-Endocrinology and Metabolism, 280(5), 685ā€“694.

    ArticleĀ  Google ScholarĀ 

  • Wei, L., Xiao, Y., Li, L., Xiong, X., Han, Y., Zhu, X., & Sun, L. (2018). The susceptibility genes in diabetic nephropathy. Kidney Diseases, 4(4), 226ā€“237.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Weil, E. J., Lemley, K. V., Mason, C. C., Yee, B., Jones, L. I., Blouch, K., Lovato, T., Richardson, M., Myers, B. D., & Nelson, R. G. (2012). Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney International, 82(9), 1010ā€“1017.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Williams, M. E. (2005). Diabetic nephropathy: The proteinuria hypothesis. American Journal of Nephrology, 25(2), 77ā€“94.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wolf, G., Butzmann, U., & Wenzel, U. O. (2003). The renin-angiotensin system and progression of renal disease: From hemodynamics to cell biology. Nephron Physiology, 93(1), 3ā€“13.

    ArticleĀ  Google ScholarĀ 

  • Xu, M., Chen, X., Yan, L., Cheng, H., & Chen, W. (2008). Association between (AC) n dinucleotide repeat polymorphism at the 50-end of the aldose reductase gene and diabetic nephropathy: A meta-analysis. Journal of Molecular Endocrinology, 40, 243ā€“251.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yilmaz, M. I., Axelsson, J., Sonmez, A., Carrero, J. J., Saglam, M., Eyileten, T., Caglar, K., Kirkpantur, A., Celik, T., Oguz, Y., & Vural, A. (2009). Effect of renin angiotensin system blockade on pentraxin 3 levels in type-2 diabetic patients with proteinuria. Clinical Journal of the American Society of Nephrology, 4(3), 535ā€“541.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Young, B. A., Maynard, C., & Boyko, E. J. (2003). Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care, 26(8), 2392ā€“2399.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Zanchi, A., Moczulski, D. K., Hanna, L. S., Wantman, M., Warram, J. H., & Krolewski, A. S. (2000). Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney International, 57(2), 405ā€“413.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang, R., Zhuang, L., Li, M., Zhao, W., Ge, X., Chen, Y., Wang, F., Wang, N., Bao, Y., Liu, L., & Liu, Y. (2018). Arg913Gln of SLC12A3 gene promotes development and progression of end-stage renal disease in Chinese type 2 diabetes mellitus. Molecular and Cellular Biochemistry, 437(1), 203ā€“210.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhu, H., Yu, W., Xie, Y., Zhang, H., Bi, Y., & Zhu, D. (2017). Association of pentraxin 3 gene polymorphisms with susceptibility to diabetic nephropathy. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 23, 428.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulanthaivel, L., Ganesan, G., Kirubhanand, C., Subbaraj, G.K. (2023). Diabetic and Nephropathy. In: Noor, R. (eds) Advances in Diabetes Research and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-0027-3_5

Download citation

Publish with us

Policies and ethics