Skip to main content

Topology and Geometry of 3-Band Models

  • Conference paper
  • First Online:
IRC-SET 2021
  • 285 Accesses

Abstract

Berry curvature is a property of N-band models which plays an analogous role of the magnetic field. The Majorana stellar representation (MSR) is a method of decomposing N-band states into multiple 2-band states, which paves way for a more intuitive geometric understanding of N-band models. We utilise the MSR to obtain a new formula for the Berry curvature of 3-band models in terms of individual contributions from each star and cross terms involving both stars, which could be insightful for investigating Berry curvature uniformity and topological behaviour of stars. We applied the MSR method to a model with uniform Berry curvature and investigated the cancellation of the divergences among three out of four of the terms to yield an overall non-divergent Berry curvature. In summary, the MSR approach aids the discovery of materials with uniform Berry curvature and is a powerful tool in the study of fractional Chern insulators (FCI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Topological Phase Transitions and Topological Phases of Matter (n.d.). Retrieved January 10, 2021, from https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2016-1.pdf

  2. Kittel, C. (1996). Introduction to solid state physics. New York: John Wiley & Sons.

    Google Scholar 

  3. Lee, C. H., Claassen, M., & Thomale, R. (2017). Band structure engineering of ideal fractional Chern insulators. Physical Review B, 96(16). https://doi.org/10.1103/physrevb.96.165150

  4. Lee, C. H., Imhof, S., Berger, C., Bayer, F., Brehm, J., Molenkamp, L. W., & Thomale, R. (2018). Topolectrical Circuits. Communications Physics, 1(1). https://doi.org/10.1038/s42005-018-0035-2

  5. Changes, Quantal Phase, & Adiabatic, Factors Accompanying. (1984). Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392(1802), 45–57. https://doi.org/10.1098/rspa.1984.0023

    Article  MathSciNet  Google Scholar 

  6. Wimmer, M., Price, H. M., Carusotto, I., & Peschel, U. (2017). Experimental measurement of the Berry curvature from anomalous transport. Nature Physics, 13(6), 545–550. https://doi.org/10.1038/nphys4050

    Article  ADS  Google Scholar 

  7. Virk, K. S., & Sipe, J. E. (2012). Anomalous THz emission from quantum wells with optically injected Berry curvature. In Conference on lasers and electro-optics. https://doi.org/10.1364/qels.2012.qtu1h.7

  8. Haldane, F. D. (2004). Berry curvature on the fermi surface: Anomalous hall effect as a topological fermi-liquid property. Physical Review Letters, 93(20). https://doi.org/10.1103/physrevlett.93.206602

  9. Asboth, J. K., Oroszlany, L., & Palyi, A. (2016). A short course on topological insulators. Lecture Notes in Physics. https://doi.org/10.1007/978-3-319-25607-8

    Article  MATH  Google Scholar 

  10. Liu, H., & Fu, L. (2014). Representation of berry phase by the trajectories of Majorana stars. Physical Review Letters, 113(24). https://doi.org/10.1103/physrevlett.113.240403

  11. Bruno, P. (2012). Quantum geometric phase in Majorana’s stellar representation: Mapping onto a many-body Aharonov-Bohm phase. Physical Review Letters, 108(24). https://doi.org/10.1103/physrevlett.108.240402

  12. Majorana, E. (1932). Atomi orientati in campo magnetico variabile. Il Nuovo Cimento, 9(2), 43–50. https://doi.org/10.1007/bf02960953

    Article  MATH  ADS  Google Scholar 

  13. Schwinger, J. (1965). On angular momentum. In L. Biedenharn & H. Van Dam (Eds.), Quantum theory of angular momentum (p. 229). New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien Hao Tan .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Hamiltonian of Uniform 3-Band Model

$$ \begin{aligned} H&= \left( {\begin{array}{*{20}l} {\frac{{51}}{{76}} + \frac{{2\cos k_{x} }}{{15}} + \frac{{2\cos k_{y} }}{{15}} - \frac{{2\cos k_{x} \cos k_{y} }}{{45}}} \\ { - \frac{{3\sin k_{x} }}{{38}} + \frac{{4\cos k_{y} \sin k_{x} }}{{31}} + \left( { - \frac{{3\sin k_{y} }}{{38}} + \frac{{4\cos k_{x} \sin k_{y} }}{{31}}} \right) i} \\ { - \frac{{3\cos k_{x} }}{{25}} + \frac{{3\cos k_{y} }}{{25}} - \frac{{\sin k_{x} \sin k_{y} }}{7}i} \\ \end{array} } \right. \\&\quad \quad \begin{array}{*{20}l} { - \frac{{3\sin k_{x} }}{{38}} + \frac{{4\cos k_{y} \sin k_{x} }}{{31}} + \left( {\frac{{3\sin k_{y} }}{{38}} - \frac{{4\cos k_{x} \sin k_{y} }}{{31}}} \right) i} \\ {\frac{{63}}{{95}} - \frac{{4\cos k_{x} }}{{41}} - \frac{{4\cos k_{y} }}{{41}} - \frac{{2\cos k_{x} \cos k_{y} }}{{17}}} \\ { - \frac{{5\sin k_{x} }}{{33}} - \frac{{\cos k_{y} \sin k_{x} }}{{15}} + \left( { - \frac{{5\sin k_{y} }}{{33}} - \frac{{\cos k_{x} \sin k_{y} }}{{15}}} \right) i} \\ \end{array} \\&\quad \quad \left. {\begin{array}{*{20}l} { - \frac{{3\cos k_{x} }}{{25}} + \frac{{3\cos k_{y} }}{{25}} + \frac{{\sin k_{x} \sin k_{y} }}{7}i} \\ { - \frac{{5\sin k_{x} }}{{33}} - \frac{{\cos k_{y} \sin k_{x} }}{{15}} + \left( {\frac{{5\sin k_{y} }}{{33}} + \frac{{\cos k_{x} \sin k_{y} }}{{15}}} \right) i} \\ {\frac{2}{3} - \frac{{\cos k_{x} }}{{28}} - \frac{{\cos k_{y} }}{{28}} + \frac{{4\cos k_{x} \cos k_{y} }}{{25}}} \\ \end{array} } \right) \\ \end{aligned} $$

Appendix 2: Derivation of the Majorana Stellar Representation (MSR)

5.1.1 2.1 Schwinger Boson Representation

We begin by first discussing the Schwinger Boson Representation for spin-J quantum systems [13]. A spin-J Hilbert space is characterised by a basis and spin operators that act on the basis states. Namely, the (2J + 1)-dimensional space has basis states given by \( \left| {J,m} \right\rangle , m \in \{-J, -J+1, ..., J-1, J\}\). Spin operators \(S^+, S^-, S^2, S_z\) act on these basis states in the following way.

$$\begin{aligned} S^+ \left| {J,m} \right\rangle&= \sqrt{J(J+1)-m(m+1)} \left| {J,m+1} \right\rangle \end{aligned}$$
(5.15)
$$\begin{aligned} S^- \left| {J,m} \right\rangle&= \sqrt{J(J+1)-m(m-1)} \left| {J,m-1} \right\rangle \end{aligned}$$
(5.16)
$$\begin{aligned} S^2 \left| {J,m} \right\rangle&= J(J+1) \left| {J,m} \right\rangle \end{aligned}$$
(5.17)
$$\begin{aligned} S_z \left| {J,m} \right\rangle&= m \left| {J,m} \right\rangle \end{aligned}$$
(5.18)

The spin operators also obey the \(\mathfrak {su}(2)\) Lie algebra.

$$\begin{aligned} S_x :&= \frac{1}{2} (S^{+} + S^{-}) \end{aligned}$$
(5.19)
$$\begin{aligned} S_y :&= \frac{1}{2i} (S^{+} - S^{-}) \end{aligned}$$
(5.20)
$$\begin{aligned} {[}S_{i}, S_{j}{]}&= i\epsilon _{ijk} S_{k} \end{aligned}$$
(5.21)

It turns out, we can define two bosonic modes and use a clever definition of the spin operators to achieve the same commutation relations and basis states. If we define \([a,a^\dagger ] = [b,b^\dagger ] = 1\) (all other commutation relations vanish), and

$$\begin{aligned} S^+&= a^\dagger b \end{aligned}$$
(5.22)
$$\begin{aligned} S^-&= b^\dagger a \end{aligned}$$
(5.23)
$$\begin{aligned} S_z&= \frac{1}{2} (a^\dagger a - b^\dagger b) \end{aligned}$$
(5.24)

then we can obtain the commutation relations

$$\begin{aligned} {[}S^{+}, S^{-}{]}&= 2S_z \end{aligned}$$
(5.25)
$$\begin{aligned} {[}S_z, S^{+}{]}&= +S^{+} \end{aligned}$$
(5.26)
$$\begin{aligned} {[S}_{z}, S^{-}{]}&= -S^{-} \end{aligned}$$
(5.27)

which is exactly Eq. (5.21) after some manipulation.

Additionally, if we define the basis states as

$$\begin{aligned} \left| {J,m} \right\rangle = \frac{(a^\dagger )^{J+m}}{\sqrt{(J+m)!}} \frac{(b^\dagger )^{J-m}}{\sqrt{(J-m)!}} \left| {\Omega } \right\rangle \end{aligned}$$
(5.28)

then one can check that it satisfies the following Eqs. (5.15)–(5.18) even with the new definitions (5.22)–(5.24). Equation (5.28) is the Schwinger Boson Representation for spin-J states in terms of 2 bosonic modes.

5.1.2 2.2. Majorana Stellar Representation

The Majorana Stellar Representation is simply a factorisation after converting a spin-J system to its Schwinger Boson Representation [12]. Let a spin-J quantum state be written in terms of the basis states \( \left| {J,m} \right\rangle \) using Schwinger bosons.

$$\begin{aligned} \left| {\Psi } \right\rangle&= \sum _{m=-J}^{J} C_m \left| {J,m} \right\rangle \end{aligned}$$
(5.29)
$$\begin{aligned}&= \sum _{m=-J}^{J} \frac{C_m (a^\dagger )^{J+m} (b^\dagger )^{J-m}}{\sqrt{(J+m)!(J-m)!}} \left| {\Omega } \right\rangle \end{aligned}$$
(5.30)

We may factorise (5.30) in the following way (5.31). The 2J complex numbers \(z_i\) completely characterise the spin-J state. Moreover, when we stereographically project the complex numbers \(z_i\) onto the 2-sphere, we obtain 2J points in the Bloch sphere, which we call the Majorana Stars.

$$\begin{aligned} \left| {\Psi } \right\rangle = \frac{C_J}{\sqrt{(2J)!}} \prod _{i=1}^{2J} (a^\dagger + z_i b^\dagger ) \left| {\Omega } \right\rangle \end{aligned}$$
(5.31)
$$\begin{aligned} \begin{aligned}&= \frac{{C_{J} }}{{\sqrt{(2J)!} }}\left[ {(a^{\dag } )^{{2J}} + (a^{\dag } )^{{2J - 1}} b^{\dag } \left( {\sum \limits _{{i = 1}}^{{2J}} {z_{i} } } \right) } \right. \\&\quad \quad \quad \quad \quad \quad \left. { + (a^{\dag } )^{{2J - 2}} (b^{\dag } )^{2} \left( {\sum \limits _{{i < j}} {z_{i} } z_{j} } \right) + ... + (b^{\dag } )^{{2J}} \left( {\prod \limits _{i} {z_{i} } } \right) } \right] \\ \end{aligned} \end{aligned}$$
(5.32)

Comparing coefficients of Eqs. (5.30) and (5.32).

$$\begin{aligned} m=J-1&{:}\,\frac{C_{J-1}}{\sqrt{(2J-1)!}} = \frac{C_J}{\sqrt{(2J)!}} \sum _i z_i \end{aligned}$$
(5.33)
$$\begin{aligned} m=J-2&{:}\,\frac{C_{J-2}}{\sqrt{(2J-2)!2!}} = \frac{C_J}{\sqrt{(2J)!}} \sum _{i<j} z_i z_j \end{aligned}$$
(5.34)
$$\begin{aligned} m=J-3&{:}\,\frac{C_{J-3}}{\sqrt{(2J-3)!3!}} = \frac{C_J}{\sqrt{(2J)!}} \sum _{i<j<k} z_i z_j z_k \end{aligned}$$
(5.35)
$$\begin{aligned}&... \end{aligned}$$
(5.36)
$$\begin{aligned} m=-J&{:}\,\frac{C_{-J}}{\sqrt{(2J)!}} = \frac{C_J}{\sqrt{(2J)!}} \prod _i z_i \end{aligned}$$
(5.37)

Now, in order to find the values of \(z_i, 1\le i \le 2J\) that satisfy Eqs. (5.33)–(5.37), we consider the polynomial equation with \(z_i\) as roots,

$$\begin{aligned} 0 =\prod _{i=1}^{2J} (x-z_i) \end{aligned}$$
(5.38)
$$\begin{aligned} \begin{aligned}&= x^{{2J}} - x^{{2J - 1}} \left( {\sum \limits _{i} {z_{i} } } \right) + x^{{2J - 2}} \left( {\sum \limits _{{i< j}} {z_{i} } z_{j} } \right) \\&\quad - x^{{2J - 3}} \left( {\sum \limits _{{i< j < k}} {z_{i} } z_{j} z_{k} } \right) + \cdots + ( - 1)^{{2J}} \left( {\prod \limits _{i} {z_{i} } } \right) \\ \end{aligned} \end{aligned}$$
(5.39)

and substituting (5.33) to (5.37) into (5.39) yields

$$\begin{aligned} \sum _{k=0}^{2J} \frac{(-1)^k C_{J-k} x^{2J-k}}{\sqrt{(2J-k)!k!}} = 0 \end{aligned}$$
(5.40)

Appendix 3: Derivation of Berry Curvature in Terms of Majorana Stars (\(N=3\))

We denote the stars for \(N=3\) models by \( \left| {A} \right\rangle \) and \( \left| {B} \right\rangle \). Starting from the expression from [10].

$$ \text {Im} \left\langle {\Psi } \right| \left| {\text {d}\Psi } \right\rangle =\text {Im} \left\langle {A} \right| \left| {\text {d}A} \right\rangle +\text {Im} \left\langle {B} \right| \left| {\text {d}B} \right\rangle +\frac{1}{4}\frac{(A\times B)\cdot d(A-B)}{N_{2}^{2}} $$

where \(N_2^2 = 1+ \left\langle {A} \right| \left| {B} \right\rangle \left\langle {B} \right| \left| {A} \right\rangle =\frac{3}{2} + \frac{1}{2} (A\cdot B)\). To find \(\mathcal {F}=\text {Im } \left\langle {\text {d}\Psi } \right| \wedge \left| {\text {d}\Psi } \right\rangle \), we take the exterior derivative of the Berry phase.

$$\begin{aligned} \mathcal {F}&=\text {Im } \left\langle {\text {d}\Psi } \right| \wedge \left| {\text {d}\Psi } \right\rangle \end{aligned}$$
(5.41)
$$\begin{aligned} \mathcal {F}&=\text {Im }\text {d} \left\langle {\Psi } \right| \left| {\text {d}\Psi } \right\rangle \end{aligned}$$
(5.42)
$$\begin{aligned} \mathcal {F}&=\text {Im } \left\langle {\text {d}A} \right| \wedge \left| {\text {d}A} \right\rangle +\text {Im } \left\langle {\text {d}B} \right| \wedge \left| {\text {d}B} \right\rangle \\&+\frac{1}{4}\frac{d(A\times B)\wedge d(A-B)}{N_{2}^{2}} \nonumber \\&+\frac{1}{8}\frac{(A\times B)\cdot d(A-B)\wedge d(A\cdot B)}{N_{2}^{4}} \nonumber \end{aligned}$$
(5.43)

Appendix 4: Decomposition of \(T_3\) into Wedge Products

$$\begin{aligned} T_3&= \frac{1}{4 N_2^2} d(A\times B) \wedge d(A-B) \\&= \frac{1}{4 N_2^2} [\partial _{\alpha _{1}} (A\times B) \partial _{\alpha _{2}} (A-B) - \partial _{\alpha _{2}} (A\times B)\partial _{\alpha _{1}} (A-B)] \text {d}{\alpha _1} \wedge \text {d}{\alpha _2} \nonumber \\&+ \frac{1}{4 N_2^2} [\partial _{\alpha _1} (A\times B) \partial _{\beta _1} (A-B) - \partial _{\beta _1} (A\times B)\partial _{\alpha _1} (A-B)] \text {d}{\alpha _1} \wedge \text {d}{\beta _1} \nonumber \\&+ \frac{1}{4 N_2^2} [\partial _{\alpha _1} (A\times B) \partial _{\beta _2} (A-B) - \partial _{\beta _2} (A\times B)\partial _{\alpha _1} (A-B)] \text {d}{\alpha _1} \wedge \text {d}{\beta _2} \nonumber \\&+ \frac{1}{4 N_2^2} [\partial _{\alpha _2} (A\times B) \partial _{\beta _1} (A-B) - \partial _{\beta _1} (A\times B)\partial _{\alpha _2} (A-B)] \text {d}{\alpha _2} \wedge \text {d}{\beta _1} \nonumber \\&+ \frac{1}{4 N_2^2} [\partial _{\alpha _2} (A\times B) \partial _{\beta _2} (A-B) - \partial _{\beta _2} (A\times B)\partial _{\alpha _2} (A-B)] \text {d}{\alpha _2} \wedge \text {d}{\beta _2} \nonumber \\&+ \frac{1}{4 N_2^2} [\partial _{\beta _1} (A\times B) \partial _{\beta _2} (A-B) - \partial _{\beta _2} (A\times B)\partial _{\beta _1} (A-B)] \text {d}{\beta _1} \wedge \text {d}{\beta _2} \nonumber \end{aligned}$$
(5.44)

Appendix 5: Simplification of Coefficient of \(\text {d}{\alpha _1} \wedge \text {d}{\alpha _2}\) at \((k_0,k_0)\)

$$\begin{aligned} \begin{aligned}&\partial _{{\alpha _{1} }} (A \times B)\partial _{{\alpha _{2} }} (A - B) - \partial _{{\alpha _{2} }} (A \times B)\partial _{{\alpha _{1} }} (A - B) \\&= - \frac{{8(1 + 4\alpha _{1} \beta _{1} - \beta _{1}^{2} + 4\alpha _{2} \beta _{2} - \beta _{2}^{2} + \alpha _{1}^{2} ( - 1 + \beta _{1}^{2} + \beta _{2}^{2} ) + \alpha _{2}^{2} ( - 1 + \beta _{1}^{2} + \beta _{2}^{2} ))}}{{((1 + \alpha _{1}^{2} + \alpha _{2}^{2} )^{3} (1 + \beta _{1}^{2} + \beta _{2}^{2} ))}} \\ \end{aligned} \end{aligned}$$
(5.45)
$$\begin{aligned} \text {At } k_x=k_y = k_0, \end{aligned}$$
(5.46)
$$\begin{aligned} f(k_0,k_0) =0 \rightarrow \quad z_1=z_2 ({\alpha _1} = {\beta _1}, {\alpha _2} = {\beta _2}), \end{aligned}$$
(5.47)
$$\begin{aligned} f=0\rightarrow A=B \rightarrow A\cdot B=1 \rightarrow \quad N_2^2(k_0,k_0) = 3/2 + 1/2 = 2 \end{aligned}$$
(5.48)
$$\begin{aligned} \text {Substituting (47 ) into (45)}, \text {it simplifies to} \end{aligned}$$
(5.49)
$$\begin{aligned} \partial _{\alpha _1} (A\times B) \partial _{\alpha _2} (A-B) - \partial _{\alpha _2} (A\times B)\partial _{\alpha _1} (A-B) = -\frac{8}{(1+\alpha _1^2+\alpha _2^2)^2} \end{aligned}$$
(5.50)
$$\begin{aligned} \begin{aligned} {\text {Coefficient}}\,{\text {of}}\,{\text { d}}\alpha _{1} \wedge {\text {d}}\alpha _{2}&= \frac{1}{{4N_{2}^{2} }} \\&\quad [\partial _{{\alpha _{1} }} (A \times B)\partial _{{\alpha _{2} }} (A - B) - \partial _{{\alpha _{2} }} (A \times B)\partial _{{\alpha _{1} }} (A - B)] \\ \end{aligned} \end{aligned}$$
(5.51)
$$\begin{aligned} = -\frac{1}{(1+\alpha _1^2+\alpha _2^2)^2} \end{aligned}$$
(5.52)

Appendix 6: Evaluation of Wedge Products

The 2 stars are given by complex roots (Eqs. 5.53 and 5.54). With the approximation of f near \(k_0\) (Eq. 5.11), we can obtain partial derivatives \(\partial _x = \frac{\partial }{\partial k_x}, \partial _y=\frac{\partial }{\partial k_y}\) of \(z_1,z_2,\bar{z}_1,\bar{z}_2\). Then, by Eqs. (5.55)–(5.58), we obtain partial derivatives \(\partial _x, \partial _y\) of \(\alpha _1 = \text {Re}(z_1), {\alpha _2} = \text {Im}(z_1), {\beta _1} = \text {Re}(z_2), {\beta _2} = \text {Im}(z_2)\).

$$\begin{aligned} z_1&= \frac{\sqrt{2} \Psi _2 + \sqrt{f}}{2\Psi _1} \end{aligned}$$
(5.53)
$$\begin{aligned} z_2&= \frac{\sqrt{2} \Psi _2 - \sqrt{f}}{2\Psi _1} \end{aligned}$$
(5.54)
$$\begin{aligned} \alpha _{1}&= \frac{1}{2} (z_1 + \bar{z}_1) \end{aligned}$$
(5.55)
$$\begin{aligned} \alpha _{2}&= \frac{1}{2i} (z_1 - \bar{z}_1) \end{aligned}$$
(5.56)
$$\begin{aligned} \beta _{1}&= \frac{1}{2} (z_2 + \bar{z}_2) \end{aligned}$$
(5.57)
$$\begin{aligned} \beta _{2}&= \frac{1}{2i} (z_2 - \bar{z}_2) \end{aligned}$$
(5.58)

Defining \(\partial _{z} = \frac{1}{2} (\partial _x - i\partial _y)\) and \(\partial _{\bar{z}} = \frac{1}{2} (\partial _x + i\partial _y)\), listed below are the wedge products which have non-zero coefficient (refer to Table 5.1) in \(T_1,T_2,T_3\).

$$\begin{aligned} \begin{aligned} \partial _{x} \alpha _{1} \partial _{y} \alpha _{2} - \partial _{y} \alpha _{1} \partial _{x} \alpha _{2}&\approx \frac{{1.85}}{{16\Psi _{1}^{2} }}\frac{1}{{\sqrt{(k_{x} - k_{0} )^{2} + (k_{y} - k_{0} )^{2} } }} \\&\quad + {\text {Re}}\left[ {\frac{{\sqrt{1.85e^{{ + i0.7\pi }} } }}{{\sqrt{2} \Psi _{1} }}\partial _{z} \left( {\frac{{\Psi _{2} }}{{\Psi _{1} }}} \right) \frac{1}{{\sqrt{(k_{x} - k_{0} ) - i(k_{y} - k_{0} )} }}} \right] \\ \end{aligned} \end{aligned}$$
(5.59)
$$\begin{aligned} \begin{aligned} \partial _{x} \alpha _{1} \partial _{y} \beta _{2} - \partial _{y} \alpha _{1} \partial _{x} \beta _{2}&\approx - \frac{{1.85}}{{16\Psi _{1}^{2} }}\frac{1}{{\sqrt{(k_{x} - k_{0} )^{2} + (k_{y} - k_{0} )^{2} } }} \\&\quad - {\text {Re}}\left[ {\frac{{\sqrt{1.85e^{{ + i0.7\pi }} } }}{{\sqrt{2} \Psi _{1} }}\partial _{z} \left( {\frac{{\bar{\Psi }}}{{2\Psi _{1} }}} \right) \frac{1}{{\sqrt{(k_{x} - k_{0} ) - i(k_{y} - k_{0} )} }}} \right] \\ \end{aligned} \end{aligned}$$
(5.60)
$$\begin{aligned} \begin{aligned} \partial _{x} \alpha _{2} \partial _{y} \beta _{1} - \partial _{y} \alpha _{2} \partial _{x} \beta _{1}&\approx \frac{{1.85}}{{16\Psi _{1}^{2} }}\frac{1}{{\sqrt{(k_{x} - k_{0} )^{2} + (k_{y} - k_{0} )^{2} } }} \\&\quad - {\text {Re}}\left[ {\frac{{\sqrt{1.85e^{{ + i0.7\pi }} } }}{{\sqrt{2} \Psi _{1} }}\partial _{z} \left( {\frac{{\bar{\Psi }_{2} }}{{\Psi _{1} }}} \right) \frac{1}{{\sqrt{(k_{x} - k_{0} ) - i(k_{y} - k_{0} )} }}} \right] \\ \end{aligned} \end{aligned}$$
(5.61)
$$\begin{aligned} \begin{aligned} \partial _{x} \beta _{1} \partial _{y} \beta _{2} - \partial _{y} \beta _{1} \partial _{x} \beta _{2}&\approx \frac{{1.85}}{{16\Psi _{1}^{2} }}\frac{1}{{\sqrt{(k_{x} - k_{0} )^{2} + (k_{y} - k_{0} )^{2} } }} \\&\quad - {\text {Re}}\left[ {\frac{{\sqrt{1.85e^{{ + i0.7\pi }} } }}{{\sqrt{2} \Psi _{1} }}\partial _{z} \left( {\frac{{\Psi _{2} }}{{\Psi _{1} }}} \right) \frac{1}{{\sqrt{(k_{x} - k_{0} ) - i(k_{y} - k_{0} )} }}} \right] \\ \end{aligned}\end{aligned}$$
(5.62)

Appendix 7: Additional Figures

See Figs. 5.13, 5.14, 5.15, and 5.16.

Fig. 5.13
figure 13

Plot of \(\theta \) and \(\phi \) for both stars. The stars interchange positions as one traverses in the parameter space \(\mathbb {T}^2\), and thus are said to be entangled

Fig. 5.14
figure 14

Plot of \(\Psi _1\) near \(k_0\)

Fig. 5.15
figure 15figure 15

Plot of \(\Psi _2\) near \(k_0\)

Fig. 5.16
figure 16

Plot of f near \(k_0\)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, C.H., Tan, C.H. (2022). Topology and Geometry of 3-Band Models. In: Guo, H., Ren, H., Wang, V., Chekole, E.G., Lakshmanan, U. (eds) IRC-SET 2021. Springer, Singapore. https://doi.org/10.1007/978-981-16-9869-9_5

Download citation

Publish with us

Policies and ethics