Skip to main content

Investigating the Genetic Etiology of Disease in a Patient with Aplastic Anemia

  • Conference paper
  • First Online:
IRC-SET 2021

Abstract

This study investigates the molecular basis of a male patient presenting with aplastic anemia (AA) and related symptoms of macrocytosis and mild thrombocytopenia. In addition, this patient also presents symptoms not usually found in AA patients, such as fatty liver, liver cirrhosis with portal hypertension, diffuse cerebral and cerebellar atrophy, and congenital left sensorineural hearing loss. As such, it is hypothesized that the patient has AA that is secondary to inherited bone marrow failure syndromes related to telomere biology disorders. Thus, to identify the underlying genetic cause of the disease, relative telomere length (RTL) of proband and family members was determined by qPCR, followed by identification of disease-causing variants through next-generation sequencing of the proband. The proband has a RTL of 0.11 (− 5.96 SD) which is shorter than the 1st percentile (− 2.33 SD). As RTL analysis indicates significant telomere shortening in the patient, it is likely that the patient has a telomere biology disorder. 8 variants in genes (DKC1, ATXN3, PTPRQ, ABCB4, DIAPH3, TBP, PARP1) associated with our patient’s phenotype, 2 of which were previously reported and were also shortlisted as potential candidates. However, upon curation, these variants were found to be of uncertain significance, and the genetic cause of our patient’s condition remains elusive. Nonetheless, we were able to confirm that the patient had significant shortening of telomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoettler, M. L., & Nathan, D. G. (2018). The pathophysiology of acquired aplastic anemia. Hematology Oncology Clinics of North America, 32(4), 581–594.

    Article  Google Scholar 

  2. Moore, C. A., & Krishnan, K. (2020). Aplastic anemia (updated 2020 Nov 23). In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.

    Google Scholar 

  3. Vaht, K., Göransson, M., Carlson, K., Isaksson, C., Lenhoff, S., Sandstedt, A., et al. (2017). Incidence and outcome of acquired aplastic anemia: Real-world data from patients diagnosed in Sweden from 2000 to 2011. Haematologica, 102(10), 1683–1690.

    Article  Google Scholar 

  4. Alzahrani, N., Ashor, N., Fathi, T., Bukhari, D., & Zaher, G. (2018). Idiopathic severe aplastic anemia with a delayed response to immunosuppressive therapy: A case report. Clinical Case Reports, 6(6), 1029–1032.

    Article  Google Scholar 

  5. Calado, R. T., Regal, J. A., Kleiner, D. E., Schrump, D. S., Peterson, N. R., & Pons, V. et al. (2009). A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS One, 4(11), e7926.

    Google Scholar 

  6. Gitto, L., Stoppacher, R., Richardson, T. E., & Serinelli, S. (2020). DC. Autopsy and Case Reports, 10(3).

    Google Scholar 

  7. Savage, S., & Bertuch, A. (2010). The genetics and clinical manifestations of telomere biology disorders. Genetics in Medicine, 12, 753–764.

    Article  Google Scholar 

  8. Ball, S. E., Gibson, F. M., Rizzo, S., Tooze, J. A., Marsh, J. C., & Gordon-Smith, E. C. (1998). Progressive telomere shortening in aplastic anemia. Blood, 91(10), 3582–3592.

    Article  Google Scholar 

  9. Gramatges, M. M., & Bertuch, A. A. (2013). Short telomeres: From dyskeratosis congenita to sporadic aplastic anemia and malignancy. Translational Research: The Journal of Laboratory and Clinical Medicine, 162(6).

    Google Scholar 

  10. Acquired Aplastic Anemia (n.d.). NORD (National Organization for Rare Disorders).

    Google Scholar 

  11. Hartung, H. D., Olson, T. S., & Bessler, M. (2013). Acquired aplastic anemia in children. Pediatric Clinics of North America, 60(6), 1311–1336.

    Google Scholar 

  12. Moore, C. A., & Krishnan, K. (2020). Bone marrow failure (updated 2020 Jul 13). In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.

    Google Scholar 

  13. Balogh, E. P., Miller, B. T., & Ball, J. R., Committee on Diagnostic Error in Health Care; Board on Health Care Services & The National Academies of Sciences (2015). The diagnostic process. National Academies Press (US). www.ncbi.nlm.nih.gov

  14. Fernández García, M. S., & Teruya-Feldstein, J. (2014). The diagnosis and treatment of dyskeratosis congenita: A review. Journal of Blood Medicine, 5, 157–167.

    Google Scholar 

  15. Nelson, A., Myers, K. (2021). Shwachman-diamond syndrome. 2008 Jul 17 (updated 2018 Oct 18). In M. P. Adam, H. H. Ardinger, R. A. Pagon, et al. (Eds.), GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle (1993–2021)

    Google Scholar 

  16. Joglekar, M. V., Satoor, S. N., Wong, W. K. M., Cheng, F., Ma, R. C. W., & Hardikar, A. A. (2020). An optimised step-by-step protocol for measuring relative telomere length. Methods and Protocols, 3(2), 27.

    Article  Google Scholar 

  17. Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30(10), e47.

    Google Scholar 

  18. Alter, B. P., Rosenberg, P. S., Giri, N., Baerlocher, G. M., Lansdorp, P. M., & Savage, S. A. (2012). Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica, 97(3), 353–359.

    Article  Google Scholar 

  19. Arias-Salgado, E. G., Galvez, E., Planas-Cerezales, L., Pintado-Berninches, L., Vallespin, E., Martinez, P., et al. (2019). Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes. Orphanet Journal of Rare Diseases, 14.

    Google Scholar 

  20. Savage, S. A. (2019, November 21). Dyskeratosis congenita. Seattle: Nih.Gov; University of Washington.

    Google Scholar 

  21. Rizvi, S., Raza, S. T., & Mahdi, F. (2015). Telomere length variations in aging and age-related diseases. Current Aging Science, 7(3), 161–167.

    Google Scholar 

  22. Shammas, M. A. (2011). Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 14(1), 28–34.

    Article  Google Scholar 

  23. Starkweather, A. R., Alhaeeri, A., Montpetit, A., Brumelle, J., Filler, K., Montpetit, M., Mohanraj, L., Lyon, D. E., & Jackson-Cook, C. K. (2014). An integrative review of factors associated with telomere length and implications for biobehavioral research. Nursing Research, 63(1), 36–50.

    Article  Google Scholar 

  24. Anna, A., & Monika, G. (2018). Splicing mutations in human genetic disorders: Examples, detection, and confirmation. Journal of Applied Genetics, 59(3), 253–268.

    Google Scholar 

  25. OMIM Entry—*300126—DYSKERIN; DKC1 (n.d.).

    Google Scholar 

  26. Chalkoo, A. H., Kaul, V., & Wani, L. A. (2014). Zinsser-Cole-Engmann syndrome: A rare case report with literature review. Journal of Clinical and Experimental Dentistry, 6(3), e303–e306.

    Article  Google Scholar 

  27. OMIM Entry—# 305000—DYSKERATOSIS CONGENITA, X-LINKED; DKCX (n.d.).

    Google Scholar 

  28. National Organization for Rare Disorders (2020). Dyskeratosis congenita.

    Google Scholar 

  29. OMIM Entry—*607047—ATAXIN 3; ATXN3 (n.d.).

    Google Scholar 

  30. OMIM Entry—*171060—ATP-BINDING CASSETTE, SUBFAMILY B, MEMBER 4; ABCB4 (n.d.).

    Google Scholar 

  31. OMIM Entry—*603317—PROTEIN-TYROSINE PHOSPHATASE, RECEPTOR-TYPE, Q; PTPRQ (n.d.).

    Google Scholar 

  32. OMIM Entry—*614567—DIAPHANOUS-RELATED FORMIN 3; DIAPH3 (n.d.).

    Google Scholar 

  33. OMIM Entry—*600075—TATA BOX-BINDING PROTEIN; TBP (n.d.).

    Google Scholar 

  34. Ramirez, M. H., Adelfalk, C., Kontou, M., Hirsch-Kauffmann, M., & Schweiger, M. (2003). The cellular control enzyme PolyADP Ribosyl Transferase is eliminated in cultured fanconi anemia fibroblasts at confluency. Biological Chemistry, 384(1), 169–174.

    Google Scholar 

  35. ATXN3 [Internet], Bethesda: National Library of Medicine (US), National Center for Biotechnology Information (2004)

    Google Scholar 

  36. Bettencourt, C., & Lima, M. (2011). Machado-Joseph disease: From first descriptions to new perspectives. Orphanet Journal of Rare Diseases, 6(1), 35.

    Article  Google Scholar 

  37. Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., et al. (1994). CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genetics, 8(3), 221–228.

    Google Scholar 

  38. Stochmanski, S. J., Therrien, M., Laganière, J., Rochefort, D., Laurent, S., Karemera, L., et al. (2012). Expanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models. Human Molecular Genetics, 21(10), 2211–2218.

    Google Scholar 

  39. Stättermayer, A. F., Halilbasic, E., Wrba, F., Ferenci, P., & Trauner, M. (2020). Variants in ABCB4 across the spectrum of cholestatic liver diseases in adults. Journal of Hepatology.

    Google Scholar 

  40. Davit-Spraul, A., Gonzales, E., Baussan, C., & Jacquemin, E. (2010). The spectrum of liver diseases related to ABCB4 gene mutations: Pathophysiology and clinical aspects. Seminars in Liver Disease, 30(02), 134–146.

    Google Scholar 

  41. Vollrath, M. A., Kwan, K. Y., & Corey, D. P. (2007). The micromachinery of mechanotransduction in hair cells. Annual Review of Neuroscience, 30(1), 339–365.

    Article  Google Scholar 

  42. Wu, X., Wang, S., Chen, S., Wen, Y., Liu, B., Xie, W., et al. (2018). Autosomal recessive congenital sensorineural hearing loss due to a novel compound heterozygous PTPRQ mutation in a Chinese family. Neural Plasticity, 2018, 1–6.

    Article  Google Scholar 

  43. Montpetit, A. J., Alhareeri, A. A., Montpetit, M., Starkweather, A. R., Elmore, L. W., Filler, K., et al. (2014). Telomere length: a review of methods for measurement. Nursing Research, 63(4), 289–299.

    Google Scholar 

  44. Ratnasamy, V., Navaneethakrishnan, S., Sirisena, N., et al. (2018). Dyskeratosis congenita with a novel genetic variant in the DKC1 gene: A case report. BMC Medical Genetics, 19, 85 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly Low Ying Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, B.L.Y. et al. (2022). Investigating the Genetic Etiology of Disease in a Patient with Aplastic Anemia. In: Guo, H., Ren, H., Wang, V., Chekole, E.G., Lakshmanan, U. (eds) IRC-SET 2021. Springer, Singapore. https://doi.org/10.1007/978-981-16-9869-9_4

Download citation

Publish with us

Policies and ethics