Skip to main content

Effects of Heat Stress and Climate Change Induced Bushfires on Beef Meat Quality

  • Chapter
  • First Online:
Climate Change and Livestock Production: Recent Advances and Future Perspectives

Abstract

Heat stress is considered a very stressful event for livestock, and it has detrimental consequences for not only animal health and productivity but also product quality. During bushfires, which are increasingly prevalent under climate change, animals can be exposed to extreme heat stress events. Ruminants are very prone to heat stress because of increased metabolic rate. Under the influence of chronic heat stress, ruminants exhibit a reduction of muscle glycogen concentration, which leads to increased, ultimate pH and WHC, producing the quality defect of dark-cutting meat. In addition, heat stress causes extended protein and lipid oxidation, oxidative stress and shelf life reduction of meat. A case study is presented on the effects of the devastating bushfires in Australia in 2019–2020 on the quality of 450,000 beef carcases. This chapter focuses on the effects of bushfire and heat stress on the ruminants and the consecutive changes produced on the quality of the meat. Discussion on knowledge gaps, and future perspectives are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

$:

Dollar

%:

Percentage

°C:

Degree Celsius

ANS:

Autonomic nervous system

AUS-MEAT:

Authority for the uniform specification of meat and livestock

cAMP:

Cyclic adenosine mono phosphate

cm2:

Centimeter square

h:

Hour

HCO3:

Bicarbonate

HGP:

Hormonal growth promotant

HSP:

Heat shock protein

kg:

Kilogram

L:

Lightness

MLA:

Meat and Livestock Australia

MSA:

Meat Standards Australia

NSW:

New South Wales

pH:

Potential of hydrogen

PSE:

Pale, soft and exudative

RH:

Relative humidity

ROS:

Reactive oxygen species

US:

Unites States

WBSF:

Warner Bratzler shear force

WHC:

Water holding capacity

β:

Beta

References

  • Abril M, Campo MM, Önenç A, Sañudo C, Albertı́ P, Negueruela AI (2001) Beef colour evolution as a function of ultimate pH. Meat Sci 58(1):69–78

    CAS  PubMed  Google Scholar 

  • Adzitey F, Nurul H (2011) Pale soft exudative (PSE) and dark firm dry (DFD) meats: causes and measures to reduce these incidences. Int Food Res J 18(1):11–20

    Google Scholar 

  • Afsal A, Sejian V, Madiajagan B, Krishnan G (2018) Heat stress and livestock adaptation: neuro-endocrine regulation. Int J Vet Anim Med 1(2):1–8

    Google Scholar 

  • AUS-MEAT (2005) Handbook of Australian meat. AUS-MEAT Ltd., Brisbane

    Google Scholar 

  • Baumgard LH, Rhoads RP (2007) The effects of hyperthermia on nutrient partitioning. Paper presented at the Proc. Cornell Nutr. Conf

    Google Scholar 

  • Beede D, Collier R (1986) Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci 62(2):543–554

    CAS  Google Scholar 

  • Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A (2010) Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4(7):1167–1183

    CAS  PubMed  Google Scholar 

  • Bewley JM, Grott MW, Einstein ME, Schutz MM (2008) Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J Dairy Sci 91(10):3880–3887

    CAS  PubMed  Google Scholar 

  • Boykin CA, Eastwood LC, Harris MK, Hale DS, Kerth CR, Griffin DB, Arnold AN, Hasty JD, Belk KE, Woerner DR, Delmore RJ Jr, Martin JN, Vanoverbeke DL, Mafi GG, Pfeiffer MM, Lawrence TE, Mcevers TJ, Schmidt TB, Maddock RJ, Johnson DD, Carr CC, Scheffler JM, Pringle TD, Stelzleni AM, Gottlieb J, Savell JW (2017) National beef quality audit – 2016: survey of carcass characteristics through instrument grading assessments1. J Anim Sci 95:3003–3011

    CAS  PubMed  Google Scholar 

  • Celi P, Gabai G (2015) Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation. Front Vet Sci 2:48

    PubMed  PubMed Central  Google Scholar 

  • Chauhan SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR (2014a) Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J Anim Sci 92(8):3364–3374

    CAS  PubMed  Google Scholar 

  • Chauhan SS, Celi P, Ponnampalam EN, Leury BJ, Liu F, Dunshea FR (2014b) Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: role of vitamin E and selenium. Anim Prod Sci 54(10):1525–1536

    CAS  Google Scholar 

  • Cottrell JJ, Liu F, Hung AT, DiGiacomo K, Chauhan SS, Leury BJ, Furness JB, Celi P, Dunshea FR (2015) Nutritional strategies to alleviate heat stress in pigs. Anim Prod Sci 55(12):1391–1402

    CAS  Google Scholar 

  • DiGiacomo K, Warner RD, Leury BJ, Gaughan JB, Dunshea FR (2014) Dietary betaine supplementation has energy-sparing effects in feedlot cattle during summer, particularly in those without access to shade. Anim Prod Sci 54(4):450–458

    CAS  Google Scholar 

  • Faustman C (1994) Postmortem changes in muscle foods. In: Kinsman DM, Kotula AW, Breidenstein BC (eds) Muscle foods: meat poultry and seafood technology. Springer US, Boston, MA, pp 63–78

    Google Scholar 

  • Franch J, Aslesen R, Jensen J (1999) Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase. Biochem J 344(1):231–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner GE, McGilchrist P, Pethick DW (2014) Ruminant glycogen metabolism. Anim Prod Sci 54(10):1575–1583

    CAS  Google Scholar 

  • Gaughan JB, Mader TL, Savage D, Young BA (1996) Effect of feeding regime on feed intake of cattle exposed to heat. In: Proceedings-Australian society of animal production, vol 21. Australian Society of Animal Production, pp 223–226

    Google Scholar 

  • Gholamreza Z, Xi H, Xi F, Dong UA (2019) How can heat stress affect chicken meat quality? A review. Poult Sci 98(3):1551–1556. https://doi.org/10.3382/ps/pey399

    Article  CAS  Google Scholar 

  • Gonzalez-Rivas PA, DiGiacomo K, Russo VM, Leury BJ, Cottrell JJ, Dunshea FR (2016) Feeding slowly fermentable grains has the potential to ameliorate heat stress in grain-fed wethers. J Anim Sci 94(7):2981–2991

    CAS  PubMed  Google Scholar 

  • Gonzalez-Rivas PA, DiGiacomo K, Leury BJ, Cottrell JJ, Dunshea FR (2017) Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. J Anim Sci 95(12):5547–5562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory NG (2010) How climatic changes could affect meat quality. Food Res Int 43(7):1866–1873

    Google Scholar 

  • Hillman AE, Sadler RJ, Smith M, Pfeiffer C, Barwell R, Lee A, Fraser C, Lau J, Cowled BD (2021) Livestock exposure to bushfires and meat, offal and carcass quality: is there an association? Prev Vet Med Pre-Rev. (In press). doi: https://doi.org/10.2139/ssrn.3955748

  • Holt SM, Gaughan JB, Mader TL (2004) Feeding strategies for grain-fed cattle in a hot environment. Aust J Agric Res 55(7):719–725

    Google Scholar 

  • Hughes J, Clarke F, Purslow P, Warner R (2018) A high rigor temperature, not sarcomere length, determines light scattering properties and muscle colour in beef M. sternomandibularis meat and muscle fibres. Meat Sci 145:1–8

    CAS  PubMed  Google Scholar 

  • Imik H, Atasever MA, Urcar S, Ozlu H, Gumus R, Atasever M (2012) Meat quality of heat stress exposed broilers and effect of protein and vitamin E. Br Poult Sci 53(5):689–698

    CAS  PubMed  Google Scholar 

  • Jacob RH, Surridge VSM, Beatty DT, Gardner GE, Warner RD (2014) Grain feeding increases core body temperature of beef cattle. Anim Prod Sci 54(4):444–449

    CAS  Google Scholar 

  • Kadim IT, Mahgoub O, Al-Ajmi DS, Al-Maqbaly RS, Al-Mugheiry SM, Bartolome DY (2004) The influence of season on quality characteristics of hot-boned beef m. longissimus thoracis. Meat Sci 66(4):831–836

    CAS  PubMed  Google Scholar 

  • Kadim IT, Mahgoub O, Al-Marzooqi W, Al-Ajmi DS, Al-Maqbali RS, Al-Lawati SM (2008) The influence of seasonal temperatures on meat quality characteristics of hot-boned, m. psoas major and minor, from goats and sheep. Meat Sci 80(2):210–215

    CAS  PubMed  Google Scholar 

  • Kadzere CT, Murphy MR, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Livest Prod Sci 77(1):59–91

    Google Scholar 

  • Kim YHB, Warner RD, Rosenvold K (2014) Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review. Anim Prod Sci 54(4):375–395

    CAS  Google Scholar 

  • Knee BW, Cummins LJ, Walker P, Warner R (2004) Seasonal variation in muscle glycogen in beef steers. Aust J Exp Agric 44(8):729–734

    CAS  Google Scholar 

  • Knee BW, Cummins LJ, Walker PJ, Kearney GA, Warner RD (2007) Reducing dark-cutting in pasture-fed beef steers by high-energy supplementation. Aust J Exp Agric 47(11):1277–1283

    Google Scholar 

  • Kouba M, Hermier D, Le Dividich J (2001) Influence of a high ambient temperature on lipid metabolism in the growing pig. J Anim Sci 79(1):81–87

    CAS  PubMed  Google Scholar 

  • Kreikemeier KK, Unruh JA, Eck TP (1998) Factors affecting the occurrence of dark-cutting beef and selected carcass traits in finished beef cattle. J Anim Sci 76(2):388–395

    CAS  PubMed  Google Scholar 

  • Liu F, Cottrell JJ, Furness JB, Rivera LR, Kelly FW, Wijesiriwardana U, Pustovit RV, Fothergill LJ, Bravo DM, Celi P, Leury BJ (2016) Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physiol 101(7):801–810

    CAS  PubMed  Google Scholar 

  • Mader TL, Gaughan J, Salvage D, Young B (1997) Time of feeding influence on cattle exposed to heat. Nebraska Beef Cattle Rep Paper 449:77–80. http://digitalcommons.unl.edu/animalscinbcr/449

    Google Scholar 

  • Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physiological traits as affected by heat stress in sheep—a review. Small Rumin Res 71(1–3):1–12

    Google Scholar 

  • Matthews SG, Parrott RF (1991) Dehydration, but not vasopressin infusion, enhances the adrenocortical responses of sheep to corticotropin-releasing hormone or restraint. Eur J Endocrinol 125(5):556–562

    CAS  Google Scholar 

  • McPhail NG, Stark JL, Ball AJ, Warner RD (2014) Factors influencing the occurrence of high ultimate pH in three muscles of lamb carcasses in Australia. Anim Prod Sci 54(10):1853–1859

    CAS  Google Scholar 

  • Minton JE (1994) Function of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system in models of acute stress in domestic farm animals. J Anim Sci 72(7):1891–1898

    CAS  PubMed  Google Scholar 

  • Mitlöhner FM, Morrow JL, Dailey JW, Wilson SC, Galyean ML, Miller MF, McGlone JJ (2001) Shade and water misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. J Anim Sci 79(9):2327–2335

    PubMed  Google Scholar 

  • Mitlöhner FM, Galyean ML, McGlone JJ (2002) Shade effects on performance, carcass traits, physiology, and behavior of heat-stressed feedlot heifers. J Anim Sci 80(8):2043–2050

    PubMed  Google Scholar 

  • MLA (2021) Website. https://wwwmlacomau/research-and-development/dealing-with-natural-disasters/bushfire-recovery/bushfire-implications-for-livestock-wellbeing/. Accessed 16 Dec 2021

  • MSA (2021a) Website. https://solutionstofeedback.mla.com.au/cattle/meat-standards-australia-grading/msa-index/. Accessed 16 Dec 2021

  • MSA, (2021b) Website. https://www.mla.com.au/marketing-beef-and-lamb/meat-standards-australia/msa-beef/grading/. Accessed 16 Dec 2021

  • Mujahid A, Yoshiki Y, Akiba Y, Toyomizu M (2005) Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poult Sci 84(2):307–314

    CAS  PubMed  Google Scholar 

  • Mujahid A, Sato K, Akiba Y, Toyomizu M (2006) Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle, possibly via downregulation of uncoupling protein content. Poult Sci 85(7):1259–1265

    CAS  PubMed  Google Scholar 

  • Mujahid A, Akiba Y, Warden CH, Toyomizu M (2007) Sequential changes in superoxide production, anion carriers and substrate oxidation in skeletal muscle mitochondria of heat-stressed chickens. Federation Eur Biochem Soc Lett 581(18):3461–3467

    CAS  Google Scholar 

  • Odongo NE, AlZahal O, Lindinger MI, Duffield TF, Valdes EV, Terrell SP, McBride BW (2006) Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs. J Anim Sci 84(2):447–455

    CAS  PubMed  Google Scholar 

  • Owens CM, Alvarado CZ, Sams AR (2009) Research developments in pale, soft, and exudative Turkey meat in North America. Poult Sci 88(7):1513–1517

    CAS  PubMed  Google Scholar 

  • Panjono, Kang SM, Lee IS, Lee SK (2011) The quality characteristics of M. longissimus from Hanwoo (Korean cattle) steer with different raising altitudes and slaughter seasons. Livest Sci 136(2–3):240–246

    Google Scholar 

  • Panjono, Kang SM, Lee IS, Lee SK (2009) Carcass characteristics of Hanwoo (Korean cattle) from different sex conditions, raising altitudes and slaughter seasons. Livest Sci 123(2):283–287. https://doi.org/10.1016/j.livsci.2008.11.024

    Article  Google Scholar 

  • Pethick DW, Davidson R, Hopkins DL, Jacob RH, D’Souza DN, Thompson JM, Walker PJ (2005) The effect of dietary treatment on meat quality and on consumer perception of sheep meat eating quality. Aust J Exp Agric 45(5):517–524

    Google Scholar 

  • Pighin DG, Brown W, Ferguson DM, Fisher AD, Warner RD (2014) Relationship between changes in core body temperature in lambs and post-slaughter muscle glycogen content and dark-cutting. Anim Prod Sci 54(4):459–463

    CAS  Google Scholar 

  • Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(5):707–728

    CAS  PubMed  Google Scholar 

  • Roach PJ (1990) Control of glycogen synthase by hierarchal protein phosphorylation. Federation Am Soc Exp Biol J 4(12):2961–2968

    CAS  Google Scholar 

  • Russell JB (2007) Can the heat of ruminal fermentation be manipulated to decrease heat stress. In: Proceedings of the 22nd annual southwest nutrition and management conference, 22, pp 109–115

    Google Scholar 

  • Schneider PL, Beede DK, Wilcox CJ (1988) Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments. J Anim Sci 66(1):112–125

    CAS  PubMed  Google Scholar 

  • Shakeri M, Cottrell JJ, Wilkinson S, Ringuet M, Furness JB, Dunshea FR (2018) Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals 8(10):162

    PubMed Central  Google Scholar 

  • Stone G, Pozza RD, Carter J, Mckeon G (2019) Long Paddock: climate risk and grazing information for Australian rangelands and grazing communities. Rangel J 41:225–232

    Google Scholar 

  • St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by U.S. livestock industries. J Dairy Sci 86:E52–E77

    Google Scholar 

  • Suman SP, Joseph P (2013) Myoglobin chemistry and meat color. Annu Rev Food Sci Technol 4:79–99

    CAS  PubMed  Google Scholar 

  • Tajima K, Nonaka I, Higuchi K, Takusari N, Kurihara M, Takenaka A, Mitsumori M, Kajikawa H, Aminov RI (2007) Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 13(2):57–64

    PubMed  Google Scholar 

  • Visner M, Shirowzhan S, Pettit C (2021) Spatial analysis, interactive visualisation and gis-based dashboard for monitoring spatio-temporal changes of hotspots of bushfires over 100 years in New South Wales, Australia. Buildings 11(2):37

    Google Scholar 

  • Wang RR, Pan XJ, Peng ZQ (2009) Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poult Sci 88(5):1078–1084. https://doi.org/10.3382/ps.2008-00094

    Article  CAS  PubMed  Google Scholar 

  • Warner RD, Dunshea FR, Ponnampalam EN, Ferguson D, Gardner G, Martin KM, Salvatore L, Hopkins DL, Pethick DW (2006) Quality meat from merinos. In: Wool meets meat: tools for a modern sheep enterprise. Proceedings of the 2006 Australian sheep industry cooperative research Centre conference, Orange, Australia. Australian Sheep Industry CRC, pp 162–167

    Google Scholar 

  • Warner RD, Dunshea FR, Gutzke D, Lau J, Kearney G (2014) Factors influencing the incidence of high rigor temperature in beef carcasses in Australia. Anim Prod Sci 54(4):363–374

    Google Scholar 

  • Węglarz A (2010) Meat quality defined based on pH and colour depending on cattle category and slaughter season. Czech J Anim Sci 55(12):548–556

    Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86(6):2131–2144

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn D. Warner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Warner, R.D. et al. (2021). Effects of Heat Stress and Climate Change Induced Bushfires on Beef Meat Quality. In: Sejian, V., Chauhan, S.S., Devaraj, C., Malik, P.K., Bhatta, R. (eds) Climate Change and Livestock Production: Recent Advances and Future Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-16-9836-1_2

Download citation

Publish with us

Policies and ethics