Skip to main content

Comparative Assessment of Rumen Microbial Diversity in Cattle and Buffaloes

  • Chapter
  • First Online:
Climate Change and Livestock Production: Recent Advances and Future Perspectives

Abstract

Cattle and buffalo are essential components of the livestock industry, which contribute significantly to the economy. Globally, the rumen microbiota in general, and methanogen community in particular in buffaloes, have received less attention than cattle. The rumen microbiota has a strong correlation with the digestion and metabolism of host diet. Furthermore, buffalo rumen exhibits higher bacterial, fungal and protozoal populations compared to cows, indicating different metagenome profiles. Firmicutes and Bacteroidetes are the most prevalent ruminal bacterial phyla in both buffaloes and cows, indicating the existence of a core microbiome in ruminants. Diversity of microbes is much higher in buffaloes compared to cattle. Between buffalo and Jersey cows, the methanogen community was comparable, with Methanobrevibacter genus accounting for more than 90% of the total archaea. The protozoal community are more variable than bacteria and archaea; Metadinium being higher in buffaloes, while the Entodinium genus predominated in Jersey cows. Fungal diversity has been found to be influenced more by the host rather than effect of diet. Genera Caeocomyces, Cyllamyces, and Orpinomycesi have been principally found in cattle while Aspergillus, Candida, or Kluyveromyces found to be highly abundant in buffaloes. It is critical to characterize the ruminal microbiota differences between buffalo and Jersey cows on a worldwide geographic scale for developing innovative methods to their productivity while minimising environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

%:

Percentage

>:

Greater than

<:

Lesser than

CH4:

Methane

CO2:

Carbon dioxide

FAO:

Food and Agriculture Organization

GOI:

Government of India

MCP:

Microbial crude protein

mL:

Millilitre

pH:

Potential of hydrogen

RNA:

Ribonucleic acid

Tg:

Teragram

VFA:

Volatile fatty acid

References

  • Asai K, Lwin KO, Tandang AG, Lapitan RM, Herrera JRV, Del-Barrio AN, Kondo M, Ban-Tokuda T, Abrar A, Fujihara T, Matsui H (2021) Comparative analysis of rumen bacteria between water buffalo and cattle fed the same diet during their fattening period in the Philippines. Jpn Agric Res Q 55(1):69–75

    Article  CAS  Google Scholar 

  • Bainbridge ML, Cersosimo LM, Wright ADG, Kraft J (2016) Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters. FEMS Microbiol Ecol 92(5):fiw059

    Article  PubMed  Google Scholar 

  • Belanche A, de la Fuente G, Newbold CJ (2015) Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol Ecol 91(3):fiu026

    Article  PubMed  Google Scholar 

  • Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, Flint HJ, Lamed R, Bayer EA, White BA (2012) Phage–bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol 14(1):207–227

    Article  CAS  PubMed  Google Scholar 

  • Bhatta R, Malik PK, Kolte AP, Suresh KP (2019) Assessment of enteric methane emission from Indian livestock: a new approach. In: Sejian V, Isloor S, Rahman SA, Bhatta R (eds) 7th Pan commonwealth veterinary conference on the role of veterinarians in addressing the global challenges to the lives of our pets, livestock, wildlife, humans and environment held at NIANP, Bengaluru, pp 101–103

    Google Scholar 

  • Chang J, Peng S, Ciais P, Saunois M, Dangal SR, Herrero M, Havlík P, Tian H, Bousquet P (2019) Revisiting enteric methane emissions from domestic ruminants and their δ 13 C CH4 source signature. Nat Commun 10(1):1–14

    Article  Google Scholar 

  • Chanthakhoun V, Wanapat M, Kongmun P, Cherdthong A (2012) Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livest Sci 143(2–3):172–176

    Article  Google Scholar 

  • FAO (2021) Reducing enteric methane for improving food security and livelihoods. Available: http://www.fao.org/in-action/enteric-methane/background/why-is-enteric-methane-important/en/

  • Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva UJAEM (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzolin R, Dehority BA (2010) The role of pH on the survival of rumen protozoa in steers. Rev Bras Zootec 39(10):2262–2267

    Article  Google Scholar 

  • Gilbert RA, Kelly WJ, Altermann E, Leahy SC, Minchin C, Ouwerkerk D, Klieve AV (2017) Toward understanding phage: host interactions in the rumen; complete genome sequences of lytic phages infecting rumen bacteria. Front Microbiol 8:2340

    Article  PubMed  PubMed Central  Google Scholar 

  • GOI (Government of India) (2019) 20th Livestock census: provisional key results. Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry & Dairying, Govt of India. Available: http://www.dahd.nic.in/division/provisional-key-results-20th-livestock-census

  • GOI (Government of India) (2021a) Economic Survey 2020–21. Ministry of Finance, Department of Economic Affairs, Government of India, 2

    Google Scholar 

  • GOI (Government of India) (2021b) Ministry of Fisheries, Animal Husbandry and Dairying. https://dahd.nic.in/about-us/divisions/cattle-and-dairy-development

  • González N, Galindo J, Aldana AI, Marrero Y (2007) Identification and comparison of protozoa genera in rumen liquor of river buffaloes and Zebu cattle fed fodders. Technical note. Cuba J Agric Sci 41(4):331–333

    Google Scholar 

  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5(1):1–15

    Article  Google Scholar 

  • Hobson PN, Stewart CS (eds) (2012) The rumen microbial ecosystem. Springer Science & Business Media

    Google Scholar 

  • Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207

    Article  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic Press Inc, New York

    Google Scholar 

  • Huws SA, Kim EJ, Kingston-Smith AH, Lee MR, Muetzel SM, Cookson AR, Newbold CJ, Wallace RJ, Scollan ND (2009) Rumen protozoa are rich in polyunsaturated fatty acids due to the ingestion of chloroplasts. FEMS Microbiol Ecol 69(3):461–471

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MW, Zhang Q, Yang Y, Li L, Zou C, Huang C, Lin B (2018) Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions. J Appl Anim Res 46(1):740–748

    Article  Google Scholar 

  • Ishaq SL, AlZahal O, Walker N, McBride B (2017) An investigation into rumen fungal and protozoal diversity in three rumen fractions, during high-fiber or grain-induced sub-acute ruminal acidosis conditions, with or without active dry yeast supplementation. Front Microbiol 8:1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Jabari S, Eslami M, Chaji M, Mohammadabadi T, Bojarpour M (2014) Comparison digestibility and protozoa population of Khuzestan water buffalo and Holstein cow. In: Veterinary research forum, vol 5, no 4. Faculty of Veterinary Medicine, Urmia University, Urmia, p 295

    Google Scholar 

  • Jami E, White BA, Mizrahi I (2014) Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9(1):e85423

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 124–135

    Google Scholar 

  • Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8(2):e47879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klieve AV, Swain RA, Nolan JV (1996) Bacteriophages in the rumen: types present, population size and implications for the efficiency of feed utilisation. In: Proceedings of the Australian Society of Animal Production, Australia, vol 21, pp 92–94

    Google Scholar 

  • Krause DO, Nagaraja TG, Wright ADG, Callaway TR (2013) Board-invited review: rumen microbiology: leading the way in microbial ecology. J Anim Sci 91(1):331–341

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dagar SS, Puniya AK, Upadhyay RC (2013) Changes in methane emission, rumen fermentation in response to diet and microbial interactions. Res Vet Sci 94(2):263–268

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Indugu N, Vecchiarelli B, Pitta DW (2015) Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 6:781

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapitan RM, Del Barrio AN, Katsube O, Ban-Tokuda, T., Orden, E.A., Robles, A.Y., Cruz, L.C., Kanai, Y. and Fujihara, T. (2008) Comparison of fattening performance in Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis) fed on high roughage diet. Anim Sci J 79(1):76–82

    Article  CAS  Google Scholar 

  • Malik PK, Kolte AP, Bakshi B, Trivedi S, Bhatta R (2020) Rumen methanogens diversity analysis in Indian buffaloes using PCR-Denaturing Gradient Gel Electrophoresis. Approach Poultry Dairy Vet Sci 7:5

    Google Scholar 

  • Malik PK, Trivedi S, Mohapatra A, Kolte AP, Sejian V, Bhatta R, Rahman H (2021) Comparison of enteric methane yield and diversity of ruminal methanogens in cattle and buffaloes fed on the same diet. PLoS One 16(8):e0256048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews C, Crispie F, Lewis E, Reid M, O’Toole PW, Cotter PD (2019) The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10(2):115–132

    Article  CAS  Google Scholar 

  • Morgavi DP, Forano E, Martin C, Newbold CJ (2010) Microbial ecosystem and methanogenesis in ruminants. Animal 4(7):1024–1036

    Article  CAS  PubMed  Google Scholar 

  • Morgavi DP, Martin C, Jouany JP, Ranilla MJ (2012) Rumen protozoa and methanogenesis: not a simple cause–effect relationship. Br J Nutr 107(3):388–397

    Article  CAS  PubMed  Google Scholar 

  • Norton BW, Moran JB, Nolan JV (1979) Nitrogen metabolism in Brahman cross, buffalo, banteng and Shorthorn steers fed on low-quality roughage. Aust J Agric Res 30(2):341–351

    Article  CAS  Google Scholar 

  • Orpin CG (1977) The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. Microbiology 99(1):107–117

    CAS  Google Scholar 

  • Parmar NR, Pandit PD, Purohit HJ, Kumar JN, Joshi CG (2017) Influence of diet composition on cattle rumen methanogenesis: a comparative metagenomic analysis in Indian and exotic cattle. Indian J Microbiol 57(2):226–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul SS, Bu D, Xu J, Hyde KD, Yu Z (2018) A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fungal Divers 89(1):253–266

    Article  Google Scholar 

  • Paul SS, Kamra DN, Sastry VRB, Sahu NP, Agarwal N (2004) Effect of anaerobic fungi on in vitro feed digestion by mixed rumen microflora of buffalo. Reprod Nutr Dev 44(4):313–319

    Article  PubMed  Google Scholar 

  • Robles AY (1971) The feeding value of Napier grass (Pennisetum purpureum Schumach) for cattle and carabaos. Philipp J Anim Sci 8:123–130

    Google Scholar 

  • Schären M, Frahm J, Kersten S, Meyer U, Hummel J, Breves G, Dänicke S (2018) Interrelations between the rumen microbiota and production, behavioral, rumen fermentation, metabolic, and immunological attributes of dairy cows. J Dairy Sci 101(5):4615–4637

    Article  PubMed  Google Scholar 

  • Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, Eloe-Fadrosh EA, Pavlopoulos GA, Hadjithomas M, Varghese NJ, Paez-Espino D (2018) Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat Biotechnol 36(4):359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KM, Pandya PR, Parnerkar S, Tripathi AK, Rank DN, Kothari RK, Joshi CG (2011) Molecular identification of methanogenic archaea from surti buffaloes (Bubalus bubalis), reveals more hydrogenotrophic methanogens phylotypes. Braz J Microbiol 42:132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523(2):161–166

    Article  CAS  PubMed  Google Scholar 

  • Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351(6278):1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St-Pierre B, Wright AD (2013) Diversity of gut methanogens in herbivorous animals. Animal 7(s1):49–56

    Article  PubMed  Google Scholar 

  • Trivedi S, Malik PK, Kolte AP, Thirumalaisamy G, Vanitha SK, Sejian V, Dhali A, Bhatta R (2020) Influence of host and geo- graphical regions on the rumen methanogens diversity in Indian cattle and buffaloes. Research Square, Durham, pp 1–24

    Google Scholar 

  • Williams AG, Coleman GS (1992) The rumen protozoa. Springer-Verlag New York Inc., New York

    Book  Google Scholar 

  • Xue MY, Sun HZ, Wu XH, Liu JX, Guan LL (2020) Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 8:1–19

    Article  Google Scholar 

  • Zhou X, Zhang N, Zhang J, Gu Q, Dong C, Lin B, Zou C (2021) Microbiome and fermentation parameters in the rumen of dairy buffalo in response to ingestion associated with a diet supplemented with cysteamine and hemp seed oil. J Anim Physiol Anim Nutr pp.1–14. https://doi.org/10.1111/jpn.13616

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malik, P.K. et al. (2021). Comparative Assessment of Rumen Microbial Diversity in Cattle and Buffaloes. In: Sejian, V., Chauhan, S.S., Devaraj, C., Malik, P.K., Bhatta, R. (eds) Climate Change and Livestock Production: Recent Advances and Future Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-16-9836-1_19

Download citation

Publish with us

Policies and ethics