Skip to main content

Status of AMR in Food Sector: Implications for Food Safety and Food Security with Special Reference to Fisheries

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

Worldwide, consumers relish fish as food, owing to its nutritional and health benefits. Bacteria, including antimicrobial-resistant (AMR) strains, gain entry onto fish either during preharvest growth phase or postharvest processing and handling. The domestic and international trade in raw and processed fish makes them inadvertent vehicles for national and transboundary transmission of bacteria. Microorganisms in the aquatic environment adapt to the sublethal concentrations of antibiotic resulting in emergence of resistance that may eventually be disseminated via the harvested fish to human pathogens; either in the gut of fish consumers, on food contact surfaces, or in the environment. This chapter gives an overview of the importance of fish in human diet, role of fisheries in addressing food security, antimicrobial use (AMU) in aquaculture, regulations related to AMU in aquaculture, food safety vis-à-vis antibiotic residues, Rapid Alert System for Food and Feed (RASFF) notifications of the European Union pertaining antibiotic residues in fish and crustaceans, antimicrobial resistance in preharvest and postharvest fisheries, and suggest measures to mitigate AMR in aquatic animal farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aarestrup, F. M., Seyfarth, A. M., Emborg, H. D., Pedersen, K., Hendriksen, R. S., & Bager, F. E. (2001). Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal Enterococci from food animals in Denmark. Antimicrobial Agents and Chemotherapy, 45, 2054–2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, C. A., Austin, B., Meaden, P. G., & McIntosh, D. (1998). Molecular characterization of plasmid mediated oxytetracycline resistance in Aeromonas salmonicida. Applied and Environmental Microbiology, 64, 4194–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agerso, Y., Bruun, M. S., Dalsgaard, I. & Larsen, J. L. (2007). The tetracycline resistance gene tet(E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 266, 47–52.

    Google Scholar 

  • Alderman, D. J. (2009). Control of the use of veterinary drugs and vaccines in aquaculture in the European Union. In C. Rogers & B. Basurco (Eds.), The use of veterinary drugs and vaccines in Mediterranean aquaculture (pp. 13–28). CIHEAM.

    Google Scholar 

  • Alderman, D. J., & Hastings, T. S. (1998). Antibiotic use in aquaculture: Development of antibiotic resistance – potential for consumer health risks. International Journal of Food Science and Technology, 33, 139–155.

    Article  CAS  Google Scholar 

  • Aliyu, A. B., Saleha, A. A., Jalila, A., & Zunita, Z. (2016). Risk factors and spatial distribution of extended spectrum b-lactamase-producing- Escherichia coli at retail poultry meat markets in Malaysia: A cross-sectional study. BMC Public Health, 16, 699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Hernando, A., Capita, R., Prieto, M., & Alonso-Calleja, C. (2009). Comparison of antibiotic resistance patterns in Listeria monocytogenes and Salmonella enterica strains pre-exposed and exposed to poultry decontaminants. Food Control, 20, 1108–1111.

    Article  CAS  Google Scholar 

  • Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399, 629–655.

    Article  Google Scholar 

  • Basha, K. A., & Rao, B. M. (2019). Multi drug resistant Escherichia coli in the value chain of farmed freshwater fish. In M. M. Prasad, T. C. Joseph, B. Madhusudana Rao, G. K. Sivaraman, & V. Murugadas (Eds.), Book of Abstracts-National Seminar on ‘AMR in Indian Fisheries: Measures of Mitigation’ (p. 81). ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Society of Fisheries Technologists, India (SOFTI) and Marine products Export Development Authority (MPEDA), 7–8 Nov 2019.

    Google Scholar 

  • Bennani, H., Mateus, A., Mays, N., Eastmure, E., Stark, D. C. K., & Hasler, B. (2020). Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics, 2020(9), 49.

    Article  Google Scholar 

  • Beukers, A. G., Zaheer, R., Cook, S. R., Stanford, K., Chaves, A. V., Ward, M. P., et al. (2015). Effect of in-feed administration and withdrawal of tylosin phosphate on antibiotic resistance in enterococci isolated from feedlot steers. Frontiers in Microbiology, 6, 483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharathkumar, G., & Abraham, T. J. (2011). Antibiotic susceptibility of Gram-negative bacteria isolated from freshwater fish hatcheries of West Bengal, India. Indian Journal of Fisheries, 58(3), 135–138.

    Google Scholar 

  • Bridson, P. (2014). Monterey Bay Seafood watch four region summary document (Atlantic Salmon, Coho Salmon) for Norway, Chile, Scotland, British Columbia. Monterey Bay Aquarium Seafood Watch Program.

    Google Scholar 

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45, 198–207.

    Article  CAS  PubMed  Google Scholar 

  • Buschmann A. H., Tomova, A., Lopez, A., Maldonado, M. A., A. Henriquez, L. A., Ivanova, L., Moy, F., Godfrey, H. P. & Cabello, F. C. (2012). Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS ONE, 7, e42724.

    Google Scholar 

  • Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology, 8, 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  • CBC Marketplace. (2019). Shrimp containing antibiotic-resistant bacteria found in Canadian grocery stores. https://www.cbc.ca/news/canada/shrimp-antibiotics-resistance-amr-marketplace-1.5055101

  • CDDEP. (2015). https://cddep.org/publications/state_worlds_antibiotics_2015/.

  • Chantziaras, I., Boyen, F., Callens, B., & Dewulf, J. (2013). Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. The Journal of Antimicrobial Chemotherapy, 69, 827–834.

    Article  PubMed  Google Scholar 

  • Checcucci, A., Trevisi, P., Luise, D., Modesto, M., Blasioli, S., Braschi, I., & Mattarelli, P. (2020). Exploring the animal waste resistome: The spread of antimicrobial resistance genes through the use of livestock manure. Frontiers in Microbiology, 11, 1416.

    Article  PubMed  PubMed Central  Google Scholar 

  • DANMAP. (2015). Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. https://www.danmap.org/-/media/arkiv/projekt-sites/danmap/danmap-reports/danmap%2D%2D2015/danmap-2015.pdf?la=en

  • Dung, T. T., Haesebrouck, F., Sorgeloos, P., Tuan, N. A., Pasmans, F., Smet, A., et al. (2009). IncK plasmid mediated tetracycline resistance in Edwarsiella ictaluri isolates from diseased freshwater catfish in Vietnam. Aquaculture, 295, 157–159.

    Article  CAS  Google Scholar 

  • EC (2011) European Commission Action plan against the rising threats from Antimicrobial Resistance: Communication from the commission to the European parliament and the council. Brussels.

    Google Scholar 

  • ECDC/EFSA/EMA. (2015). First joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal, 13.

    Google Scholar 

  • ECDC/EFSA/EMA. (2017). Second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals: Joint interagency antimicrobial consumption and resistance analysis (JIACRA) report. EFSA Journal, 15.

    Google Scholar 

  • EIC. (2002). Compendium of Fish and Fishery Products Export Inspection Council, Ministry of Commerce and Industry, Govt. of India, S.O. 729 (E) dated 21st August 1995; Subsequently amended vide No. Order S.O.722 (E) dated 10th July, 2002.

    Google Scholar 

  • Ellis-Iversen, J., Seyfarth, A. M., Korsgaard, H., Bortolaia, V., Munck, N., & Dalsgaard, A. (2019). Antimicrobial resistant E. coli and enterococci in pangasius fillets and prawns in Danish retail imported from Asia. Food Control. https://doi.org/10.1016/j.foodcont.2019.106958

  • EU. (2010). Commission Regulation (EU) No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits (MRLs) in foodstuffs of animal origin.

    Google Scholar 

  • FAO. (2017). Antimicrobial resistance (AMR) in aquaculture, Committee on Fisheries, Sub-committee on aquaculture, Ninth Session, Rome, 24–27 October 2017, COFI:AQ/IX/2017/SBD.11.

    Google Scholar 

  • FAO. (2020). The state of the world fisheries and aquaculture 2020. Sustainability in action. https://doi.org/10.4060/ca9229en.

  • FAO, IFAD, UNICEF, WFP and WHO. (2020). The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets. FAO. https://doi.org/10.4060/ca9692en

    Book  Google Scholar 

  • FAO/WHO (2001). Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization; 2001.

    Google Scholar 

  • FDA. (2005). Withdrawal of approval of the new animal drug application for enrofloxacin in poultry. Docket number 2000N–1571 Department of Health and Human Services, United States Food and Drug Administration. Available at: http://www.fda.gov/oc/antimicrobial/baytril.pdf

  • FDA. (2015). Antimicrobials sold or distributed for use in food-producing animals. US Food and Drug Administration; 2015. http://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM440584.pdf

    Google Scholar 

  • FDA. (2016). Drugs transitioning from Over-the-Counter (OTC) to Veterinary Feed Directive (VFD) Status. In: FDA (ed.). http://www.fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/ucm482107.htm.

  • Fischer, J., Rodríguez, I., Schmoger, S., Friese, A., Roesler, U., Helmuth, R., et al. (2013). Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. Journal of Antimicrobial Chemotherapy, 68, 478–480.

    Article  CAS  PubMed  Google Scholar 

  • FSSAI. (2011). Food Safety and Standards (Contaminants, toxins and residues) regulations, 2011 (version 3, 31/08/2018). Ministry of Health and Family Welfare, Govt. of India.

    Google Scholar 

  • Gantzhorn, M. R., Pedersen, K., Olsen, J. E., & Thomsen, L. E. (2014). Biocide and antibiotic susceptibility of Salmonella isolates obtained before and after cleaning at six Danish pig slaughterhouses. International Journal of Food Microbiology, 181, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • GOI. (2002). The Gazette of India extraordinary, dated 10th July 2002, vide order No.729 (E) of the Ministry of Commerce and Industry, Government of India.

    Google Scholar 

  • GOI. (2020). Handbook on fisheries statistics 2018. Fisheries Statistics Division, Department of Fisheries, Ministry of Fisheries, Animal Husbandry & Dairying, Government of India.

    Google Scholar 

  • Golden, C. D., Koehn, J. Z., Shepon, A., et al. (2021). Aquatic foods to nourish nations. Nature. https://doi.org/10.1038/s41586-021-03917-1

  • Hammerum, A. M., Heuer, O. E., Emborg, H. D., Bagger-Skjot, L., Jensen, V. F., Rogues, A. M., Skov, R. L., Agerso, Y., Brandt, C. T., Seyfarth, A. M., et al. (2007). Danish integrated antimicrobial resistance monitoring and research program. Emerging Infectious Diseases, 13, 1632–1639.

    Article  PubMed  Google Scholar 

  • Hoogenboom, L. A. P., Bokhorst, J. G., Northolt, M. D., van de Vijver, L. P. L., Broex, N. J. G., Mevius, D. J., et al. (2008). Contaminants and microorganisms in Dutch organic food products: A comparison with conventional products. Food Additives & Contaminants: Part A, 25, 1195–1207.

    Article  CAS  Google Scholar 

  • Hu, Y., & Cheng, H. (2016). Health risk from veterinary antimicrobial use in China’s food animal production and its reduction. Environmental Pollution, 219, 993–997.

    Article  CAS  PubMed  Google Scholar 

  • Inglis, G. D., McAllister, T. A., Busz, H. W., Yanke, L. J., Morck, D. W., Olson, M. E., et al. (2005). Effects of subtherapeutic administration of antimicrobial agents to beef cattle on the prevalence of antimicrobial resistance in Campylobacter jejuni and Campylobacter hyointestinalis. Applied and Environmental Microbiology, 71, 3872–3881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israngkura, A., & Sae-Hae, S. (2002). A review of the economic impacts of aquatic animal diseases. In J. R. Arthur, M. J. Phillips, R. P. Subasinghe, M. B. Reantaso, & I. H. MacRae (Eds.), Primary aquatic animal health care in rural, small-scale, aquaculture development (FAO Fisheries technical paper no. 406) (pp. 253–286). FAO.

    Google Scholar 

  • Jackson, C. R., Davis, J. A., & Barrett, J. B. (2013). Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. Journal of Clinical Microbiology, 51, 1199–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D. P., Saegerman, C., Douny, C., Dinh, T. V., Xuan, B. H., Dang, B., et al. (2013). First survey on the use of antibiotics in pig and poultry production in the red river delta region of Vietnam. Food and Public Health, 3, 247–256.

    Google Scholar 

  • Laxminarayan, R., van Boeckel, T., & Teillant, A. (2015). The economic costs of withdrawing antimicrobial growth promoters from the livestock sector. OECD Food, Agriculture and Fisheries Papers.

    Google Scholar 

  • Le, T. X., & Munekage, Y. (2004). Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Marine Pollution Bulletin, 49, 922–929.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in china: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16, 161–168.

    Article  PubMed  Google Scholar 

  • McIntosh, D., Cunningham, D., Ji, B., Fekete, F. A., Parry, E. M., Clark, S. E., et al. (2008). Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. Salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. The Journal of Antimicrobial Chemotherapy, 61, 1221–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhearson, R. M., et al. (1991). Antibiotic-resistance in gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture, 99(3–4), 203–211.

    Article  Google Scholar 

  • Nannapaneni, R., Hanning, I., Wiggins, K. C., Story, R. P., Ricke, S. C., & Johnson, M. G. (2009). Ciprofloxacin-resistant Campylobacter persists in raw retail chicken after the fluoroquinolone ban. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 26, 1348–1353.

    Article  CAS  Google Scholar 

  • Narvaez-Bravo, C., Toufeer, M., Weese, S. J., Diarra, M. S., Deckert, A. E., Reid-Smith, R., et al. (2015). Prevalence of methicillin-resistant Staphylococcus aureus in Canadian commercial pork processing plants. Journal of Applied Microbiology, 120, 770–780.

    Article  Google Scholar 

  • Noor Uddin, G. M., Larsen, M. H., Christensen, H., Aarestrup, F. M., Phu, T. M., & Dalsgaard, A. (2015). Identification and antimicrobial resistance of bacteria Isolated from probiotic products used in shrimp culture. PLoS One, 10(7), e0132338. https://doi.org/10.1371/journal.pone.0132338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norwegian Veterinary Institute. (2016). Use of antibiotics in Norwegian Aquaculture. The Norwegian Veterinary Institute, Report 22, 11 p.

    Google Scholar 

  • Noyes, N. R., Yang, X., Linke, L. M., Magnuson, R. J., Dettenwanger, A., Cook, S., et al. (2016). Resistome diversity in cattle and the environment decreases during beef production. eLife, 5, e13195.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf

  • O’Neill, J. (2014). Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. HM Government and Wellcome Trust.

    Google Scholar 

  • Public Health England. (2015). UK One Health report: Joint report on human and animal antibiotics use, sales and resistance 2013.

    Google Scholar 

  • Ramakrishna, R., Shipton, T. A., & Hasan, M. R. (2013). Feeding and feed management of Indian major carps in Andhra Pradesh, India. FAO Fisheries and Aquaculture Technical Paper, 578 (p. 90). Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Rao, B. M., & Prasad, M. M. (2015). Residues of veterinary medicinal products (antibiotics) in shrimp exported from India to the European Union (EU). Fishing Chimes, 34, 6–11.

    CAS  Google Scholar 

  • Sabia, C., Stefani, S., Messi, P., de Niederhausern, S., Bondi, M., Condo, C., Iseppi, R., & Anacarso, I. (2017). Extended-spectrum Β-lactamase and plasmid-mediated AMPC genes in Swine and Ground Pork. Journal of Food Safety, 37, e12282.

    Article  Google Scholar 

  • Santos, L., & Ramos, F. (2016). Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends in Food Science and Technology, 52, 16–30.

    Article  CAS  Google Scholar 

  • Schar, D., Klien, E. Y., Laxminarayan, R., Gilbert, M., & van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10, 21878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlenk, D., Gollon, J. L., & Griffin, B. R. (1998). Efficacy of copper sulfate for the treatment of Ichthyophthiriasis in Channel catfish. Journal of Aquatic Animal Health, 10, 390–396.

    Article  Google Scholar 

  • Teillant, A., & Laxminarayan, R. (2015). Economics of antibiotic use in US swine and poultry production. Choices, 30, 1–11.

    Google Scholar 

  • Tomova, A., Ivanova, L., Buschmann, A. H., et al. (2015). Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environmental Microbiology Reports, 7, 803–809.

    Article  CAS  PubMed  Google Scholar 

  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112, 5649–5654.

    Article  Google Scholar 

  • Verner-Jeffreys, D. W., Welch, T. J., Schwarz, T., Pond, M. J., Woodward, M. J., Haig, S. J., et al. (2009). High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS One, 4(12), e8388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verraes, C., van Boxstael, S., Meervenne, E. V., Coillie, E. V., Butaye, P., Catry, B., de Schaetzen, M. A., Huffel, X. V., Imberechts, H., Dierick, K., Daube, G., Saegerman, C., de Block, J., Dewulf, J., & Herman, L. (2013). Antimicrobial resistance in the food chain: A review. International Journal of Environmental Research and Public Health, 10, 2643–2669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waksman, S. A. (1947). What is an antibiotic or an antibiotic substance? Mycologia, 39, 565–569.

    Article  CAS  PubMed  Google Scholar 

  • Wales, A. D., & Davies, R. H. (2015). Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4, 567–604.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15, 158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wohlfarth, G. W., & Schroeder, G. L. (1979). Use of manure in fish farming - A review. Agricultural Wastes, 1, 279–299.

    Article  Google Scholar 

  • Wu, Z. (2017). Measuring food security impact of antimicrobial use in food animal production: A review of economic literature. China Agricultural Economic Review. https://doi.org/10.1108/CAER-07-2016-0106

  • Zhao, L., Dong, Y. H., & Wang, H. (2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 408, 1069–1075.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudana Rao Badireddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Badireddy, M.R., Vaiyapuri, M., Mothadaka, M.P., Chandragiri, R.N. (2023). Status of AMR in Food Sector: Implications for Food Safety and Food Security with Special Reference to Fisheries. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics