Skip to main content

Trends in the Determination of Antimicrobial Resistance in Aquaculture and Fisheries

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

Antimicrobial resistance (AMR) and its transfer is considered a new pollutant in the aquatic system as it acts as root cause of shifting drug-obdurate genes to human consumers. During aquaculture production, microorganisms acquire antimicrobial resistance genes (ARGs) via cross-contamination with essential inputs such as inlet water, feed, manure, etc., or intentionally added prophylactic agent for maintaining the stock’s survivability away from any kind of disease outbreak. And hence, monitoring of antimicrobial contamination from various sources is the need of the hour to establish criterions for monitoring by the expert/consultant policy makers. For this purpose, operable programs of scrutiny on drug unresponsiveness of microbes require swift and accurate methods to assess the occurrence, spread, and control of diseases is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agersø, Y., & Guardabassi, L. (2005). Identification of Tet 39, a novel class of tetracycline resistance determinant in Acinetobacter spp. of environmental and clinical origin. Journal of Antimicrobial Chemotherapy, 55(4), 566–569.

    Article  PubMed  Google Scholar 

  • Aoki, T (1997). Resistance plasmids and the risk of transfer. In Furunculosis (pp. 433-440). Academic.

    Google Scholar 

  • Ashraf, A. A. E. T., Fatma, I. E.-H., Mohamed, S. E.-G., & Amany, A. S. (2020). Antibiotic resistance genes of Edwardsiella tarda isolated from Oreochromis niloticus and Clarias gariepinus, Benha. Veterinary Medical Journal, 38, 131–135.

    Google Scholar 

  • Avesar, J., Rosenfeld, D., Truman-Rosentsvit, M., Ben-Arye, T., Geffen, Y., Bercovici, M., & Levenberg, S. (2017). Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proceedings of the National Academy of Sciences, 114(29), E5787–E5795.

    Article  CAS  Google Scholar 

  • Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176–182.

    Article  CAS  PubMed  Google Scholar 

  • Baltekin, Ö., Boucharin, A., Tano, E., Andersson, D. I, & Elf, J. (2017). Fast antibiotic susceptibility testing based on single cell growth rate measurements. BioRxiv, p. 071407. https://doi.org/10.1101/071407

  • Barany, F. (1991). Genetic disease detection and DNA amplification using cloned thermostable ligase. Proceedings of the National Academy of Sciences, 88(1), 189–193.

    Article  CAS  Google Scholar 

  • Barnes, L., Heithoff, D. M., Mahan, S. P., Fox, G. N., Zambrano, A., Choe, J., Fitzgibbons, L. N., Marth, J. D., Fried, J. C., Soh, H. T., & Mahan, M. J. (2018). Smartphone-based pathogen diagnosis in urinary sepsis patients. eBioMedicine, 36, 73–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brahmi, S., Touati, A., Dunyach-Remy, C., Sotto, A., Pantel, A., & Lavigne, J. P. (2018). High prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in wild fish from the Mediterranean Sea in Algeria. Microbial Drug Resistance, 24(3), 290–298.

    Article  CAS  PubMed  Google Scholar 

  • Briet, A., Helsens, N., Delannoy, S., Debuiche, S., Brisabois, A., Midelet, G., & Granier, S. A. (2018). NDM-1-producing Vibrio parahaemolyticus isolated from imported seafood. Journal of Antimicrobial Chemotherapy, 73(9), 2578–2579.

    Article  CAS  PubMed  Google Scholar 

  • Brouwer, M. S., Rapallini, M., Geurts, Y., Harders, F., Bossers, A., Mevius, D. J., Wit, B., & Veldman, K. T. (2018). Enterobacter cloacae complex isolated from shrimps from Vietnam carrying blaIMI-1 resistant to carbapenems but not cephalosporins. Antimicrobial Agents and Chemotherapy, 62(7).

    Google Scholar 

  • Burg, T. P., Mirza, A. R., Milovic, N., Tsau, C. H., Popescu, G. A., Foster, J. S., & Manalis, S. R. (2006). Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Journal of Microelectromechanical Systems, 15(6), 1466–1476.

    Article  Google Scholar 

  • Burckhardt, I., & Zimmermann, S. (2018). Susceptibility testing of bacteria using Maldi-Tof mass spectrometry. Frontiers in Microbiology, 9, 1744. https://doi.org/10.3389/fmicb.2018.01744

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917–1942.

    Article  PubMed  Google Scholar 

  • Chantell, C. (2015). Multiplexed automated digital microscopy for rapid identification and antimicrobial susceptibility testing of bacteria and yeast directly from clinical samples. Clinical Microbiology Newsletter, 37(20), 161–167.

    Article  Google Scholar 

  • Chen, S., Zhao, S., McDermott, P. F., Schroeder, C. M., White, D. G., & Meng, J. (2005). A DNA microarray for identification of virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. Molecular and Cellular Probes, 19(3), 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Chenia, H. Y., & Vietze, C. (2012). Tetracycline resistance determinants of heterotrophic bacteria isolated from a South African tilapia aquaculture system. African Journal of Microbiology Research, 6(39), 6761–6768.

    Article  CAS  Google Scholar 

  • Chenia, H. Y. (2016). Prevalence and characterization of plasmid-mediated quinolone resistance genes in Aeromonas spp. isolated from South African freshwater fish. International Journal of Food Microbiology, 231, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Chi, T. T. K., Clausen, J. H., Van, P. T., Tersbøl, B., & Dalsgaard, A. (2017). Use practices of antimicrobials and other compounds by shrimp and fish farmers in Northern Vietnam. Aquaculture Reports, 7, 40–47.

    Article  Google Scholar 

  • Choi, J., Jung, Y. G., Kim, J., Kim, S., Jung, Y., Na, H., & Kwon, S. (2013). Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab on a Chip, 13(2), 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Yoo, J., Lee, M., Kim, E. G., Lee, J. S., Lee, S., Joo, S., Song, S. H., Kim, E. C., Lee, J. C., & Kim, H. C. (2014). A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Science Translational Medicine, 6(267), 267ra17.

    Article  Google Scholar 

  • Compton, J. (1991). Nucleic acid sequence-based amplification. Nature, 350(6313), 91–92.

    Article  CAS  PubMed  Google Scholar 

  • Duman, M., Altun, S., Cengiz, M., Saticioglu, I. B., Buyukekiz, A. G., & Sahinturk, P. (2017). Genotyping and antimicrobial resistance genes of Yersinia ruckeri isolates from rainbow trout farms. Diseases of Aquatic Organisms, 125(1), 31–44.

    Article  CAS  PubMed  Google Scholar 

  • Espedido, B. A., Dimitrijovski, B., van Hal, S. J., & Jensen, S. O. (2015). The use of whole-genome sequencing for molecular epidemiology and antimicrobial surveillance: Identifying the role of IncX3 plasmids and the spread of blaNDM-4-like genes in the Enterobacteriaceae. Journal of Clinical Pathology, 68(10), 835–838.

    Article  CAS  PubMed  Google Scholar 

  • Findlay, J., Hopkins, K. L., Meunier, D., & Woodford, N. (2015). Evaluation of three commercial assays for rapid detection of genes encoding clinically relevant carbapenemases in cultured bacteria. Journal of Antimicrobial Chemotherapy, 70(5), 1338–1342.

    Article  CAS  PubMed  Google Scholar 

  • Fredborg, M., Andersen, K. R., Jørgensen, E., Droce, A., Olesen, T., Jensen, B. B., Rosenvinge, F. S., & Sondergaard, T. E. (2013). Real-time optical antimicrobial susceptibility testing. Journal of Clinical Microbiology, 51(7), 2047–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fri, J., Njom, H.A., Ateba, C.N and Ndip, R.N (2020). Antibiotic resistance and virulence gene characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolated from healthy edible marine fish. International Journal of Microbiology, 2020, 9803903. https://doi.org/10.1155/2020/9803903

  • Furushita, M., Shiba, T., Maeda, T., Yahata, M., Kaneoka, A., Takahashi, Y., Torii, K., Hasegawa, T., & Ohta, M. (2003). Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, 69(9), 5336–5342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Álvarez, L., Busto, J. H., Avenoza, A., Sáenz, Y., Peregrina, J. M., & Oteo, J. A. (2015). Proton nuclear magnetic resonance spectroscopy as a technique for gentamicin drug susceptibility studies with Escherichia coli ATCC 25922. Journal of Clinical Microbiology, 53(8), 2433–2438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauthier, C., St-Pierre, Y., & Villemur, R. (2002). Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry. Journal of Medical Microbiology, 51(3), 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S., Tay, M. Y., Thu, A. K., Seow, K. L. G., Zhong, Y., Ng, L. C., & Schlundt, J. (2019). Conjugative IncX1 plasmid harboring colistin resistance gene mcr-5.1 in Escherichia coli isolated from chicken rice retailed in Singapore. Antimicrobial Agents and Chemotherapy, 63(11).

    Google Scholar 

  • Hayden, R. T., Clinton, L. K., Hewitt, C., Koyamatsu, T., Sun, Y., Jamison, G., Perkins, R., Tang, L., Pounds, S., & Bankowski, M. J. (2016). Rapid antimicrobial susceptibility testing using forward laser light scatter technology. Journal of Clinical Microbiology, 54(11), 2701–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriksen, R. S., Bortolaia, V., Tate, H., Tyson, G., Aarestrup, F. M., & McDermott, P. (2019). Using genomics to track global antimicrobial resistance. Frontiers in Public Health, 7, 242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinnunen, P., McNaughton, B. H., Albertson, T., Sinn, I., Mofakham, S., Elbez, R., Newton, D. W., Hunt, A., & Kopelman, R. (2012). Self-assembled magnetic bead biosensor for measuring bacterial growth and antimicrobial susceptibility testing. Small, 8(16), 2477–2482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 46(1), 165–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, K., Gupta, S. C., Baidoo, S. K., Chander, Y., & Rosen, C. J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure. Journal of Environmental Quality, 34(6), 2082–2085.

    Article  CAS  PubMed  Google Scholar 

  • Kümmerer, K., & Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical Microbiology and Infection, 9(12), 1203–1214.

    Article  PubMed  Google Scholar 

  • Lechowicz, L., Urbaniak, M., Adamus-Białek, W., & Kaca, W. (2013). The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains’ susceptibility to cephalothin. Acta Biochimica Polonica, 60(4), 713–718. PMID: 24432322.

    Google Scholar 

  • Lee, S. W., & Wendy, W. (2017). Antibiotic and heavy metal resistance of Aeromonashydrophila and Edwardsiellatarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile aeromonas septicemia and edwardsiellosis. Veterinary World, 10(7), 803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, J. C., Mastali, M., Gau, V., Suchard, M. A., Møller, A. K., Bruckner, D. A., Babbitt, J. T., Li, Y., Gornbein, J., Landaw, E. M., & McCabe, E. R. (2006). Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. Journal of Clinical Microbiology, 44(2), 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. Y., Han, Y. Y., Shih, P. H., Lian, W. N., Wang, H. H., Lin, C. H., Hsueh, P. R., Wang, J. K., & Wang, Y. L. (2016). Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Scientific Reports, 6(1), 1–15.

    Google Scholar 

  • Lo, D. Y., Lee, Y. J., Wang, J. H, & Kuo, H. C. (2014). Antimicrobial susceptibility and genetic characterisation of oxytetracycline-resistant Edwardsiellatarda isolated from diseased eels. Veterinary Record. https://doi.org/10.1136/vr.101580

  • Longo, G., Alonso-Sarduy, L., Rio, L. M., Bizzini, A., Trampuz, A., Notz, J., Dietler, G., & Kasas, S. (2013). Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nature Nanotechnology, 8(7), 522–526.

    Article  CAS  PubMed  Google Scholar 

  • MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdy, I., El-Hady, M., Ahmed, H., Elmeadawy, S., & Kenwy, A. A. (2014). Contribution on Pseudomonas aeruginosa infection in African catfish (Clarias gariepinus). Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5, 575–588.

    CAS  Google Scholar 

  • Mammeri, H., Poirel, L., Nazik, H., & Nordmann, P. (2006). Cloning and functional characterization of the ambler class C β-lactamase of Yersinia ruckeri. FEMS Microbiology Letters, 257(1), 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Marschal, M., Bachmaier, J., Autenrieth, I., Oberhettinger, P., Willmann, M., & Peter, S. (2017). Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. Journal of Clinical Microbiology, 55(7), 2116–2126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda, C. D., Kehrenberg, C., Ulep, C., Schwarz, S., & Roberts, M. C. (2003). Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrobial Agents and Chemotherapy, 47(3), 883–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Atienza, E., Gómez-Sala, B., Araújo, C., Campanero, C., Del Campo, R., Hernández, P. E., Herranz, C., & Cintas, L. M. (2013). Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology, 13(1), 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murugadas, V., Joseph, T. C., Reshmi, K., & Lalitha, K. V. (2016a). Prevalence of methicillin resistant Staphylococcus aureus in selected seafood markets and aquaculture farms in Kerala, south-west coast of India. Indian Journal of Fisheries, 64(3), 150–153.

    Google Scholar 

  • Murugadas, V., Joseph, T. C., & Lalitha, K. V. (2016b). Distribution of pathotypes of Escherichia coli in seafood from retail markets of Kerala, India. Indian Journal of Fisheries, 63(1), 152–155.

    Google Scholar 

  • Nantongo, M., Mkupasi, E. M., Byarugaba, D. K., Wamala, S. P., Mdegela, R. H., & Walakira, J. K. (2019). Molecular characterization and antibiotic susceptibility of Edwardsiella tarda isolated from farmed Nile Tilapia and African catfish from Wakiso, Uganda. Uganda Journal of Agricultural Sciences, 19(1), 51–64. https://doi.org/10.4314/ujas.v19i1.5

    Article  Google Scholar 

  • Naviner, M., Gordon, L., Giraud, E., Denis, M., Mangion, C., Le Bris, H., & Ganière, J. P. (2011). Antimicrobial resistance of Aeromonas spp. isolated from the growth pond to the commercial product in a rainbow trout farm following a flumequine treatment. Aquaculture, 315(3–4), 236–241.

    Article  CAS  Google Scholar 

  • Nguyen, T. T. T., Nguyen, H. T., Tsai, M. A., Byadgi, O., Wang, P. C., Yoshida, T., & Chen, S. C. (2017). Genetic diversity, virulence genes, and antimicrobial resistance of Streptococcus dysgalactiae isolates from different aquatic animal sources. Aquaculture, 479, 256–264.

    Article  CAS  Google Scholar 

  • Nonaka, L., Ikeno, K., & Suzuki, S. (2007). Distribution of tetracycline resistance gene, tet (M), in gram-positive and gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan. Microbes and Environments, 22(4), 355–364.

    Article  Google Scholar 

  • Nonejuie, P., Burkart, M., Pogliano, K., & Pogliano, J. (2013). Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proceedings of the National Academy of Sciences, 110(40), 16169–16174.

    Article  CAS  Google Scholar 

  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63–e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opens, H. I. (2015). Roche gobbles Smarticles. The New Yorker, 26, 186.

    Google Scholar 

  • Orozova, P., Chikova, V., & Sirakov, I. (2014). Diagnostics and antibiotic resistance of Yersinia ruckeri strains isolated from trout fish farms in Bulgaria. IJDR, 4(12), 2727–2733.

    Google Scholar 

  • Oyelade, A. A., Adelowo, O. O., & Fagade, O. E. (2018). bla NDM-1-producing Vibrio parahaemolyticus and V. vulnificus isolated from recreational beaches in Lagos, Nigeria. Environmental Science and Pollution Research, 25(33), 33538–33547.

    Article  CAS  PubMed  Google Scholar 

  • Pham, D. K., Chu, J., Do, N. T., Brose, F., Degand, G., Delahaut, P., De Pauw, E., Douny, C., Van Nguyen, K., Vu, T. D., & Scippo, M. L. (2015). Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. EcoHealth, 12(3), 480–489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, P. M., Campos, A., Kuruvilla, J., Schrama, D. and Cristobal, S. (2017). Proteomics in aquaculture: Quality and safety. In Proteomics in food science (pp. 279–295). Academic.

    Google Scholar 

  • Rottmann, R. W., Francis-Floyd, R., & Durborow, R. (1992). The role of stress in fish disease (p. 474). Southern Regional Aquaculture Center.

    Google Scholar 

  • Ruzauskas, M., Klimiene, I., Armalyte, J., Bartkiene, E., Siugzdiniene, R., Skerniskyte, J., Krasauskas, R., & Suziedeliene, E. (2018). Composition and antimicrobial resistance profile of Gram-negative microbiota prevalent in aquacultured fish. Journal of Food Safety, 38(3), e12447.

    Article  Google Scholar 

  • Saavedra, M. J., Guedes-Novais, S., Alves, A., Rema, P., Tacão, M., Correia, A., & Martínez-Murcia, A. (2004). Resistance to β-lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Onchorhynchusmykiss). International Microbiology, 7(3), 207–211.

    CAS  PubMed  Google Scholar 

  • Safavieh, M., Pandya, H. J., Venkataraman, M., Thirumalaraju, P., Kanakasabapathy, M. K., Singh, A., Prabhakar, D., Chug, M. K., & Shafiee, H. (2017). Rapid real-time antimicrobial susceptibility testing with electrical sensing on plastic microchips with printed electrodes. ACS Applied Materials & Interfaces, 9(14), 12832–12840.

    Article  CAS  Google Scholar 

  • Saviauk, T., Kiiski, J. P., Nieminen, M. K., Tamminen, N. N., Roine, A. N., Kumpulainen, P. S., Hokkinen, L. J., Karjalainen, M. T., Vuento, R. E., Aittoniemi, J. J., & Lehtimäki, T. J. (2018). Electronic nose in the detection of wound infection bacteria from bacterial cultures: A proof-of-principle study. European Surgical Research, 59(1–2), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Scarano, C., Spanu, C., Ziino, G., Pedonese, F., Dalmasso, A., Spanu, V., Virdis, S., & De Santis, E. P. (2014). Antibiotic resistance of Vibrio species isolated from Sparusaurata reared in Italian mariculture. The New Microbiologica, 37(3), 329–337.

    PubMed  Google Scholar 

  • Silvester, R., Pires, J., Van Boeckel, T. P., Madhavan, A., Balakrishnan Meenakshikutti, A., & Hatha, M. (2019). Occurrence of β-lactam resistance genes and plasmid-mediated resistance among Vibrios isolated from Southwest coast of India. Microbial Drug Resistance, 25(9), 1306–1315.

    Article  CAS  PubMed  Google Scholar 

  • Sivaraman, G. K., Deesha, V., Prasad, M. M., Jha, A. K., Visnuvinayagam, S., Nadella, R. K., Chandni, V., & Basha, A. (2016). Incidence of community acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) in seafood and its environment, Gujarat, India. International Journal of Recent Scientific Research, 7(11), 14279–14282.

    Google Scholar 

  • Sousa, M., Torres, C., Barros, J., Somalo, S., Igrejas, G., & Poeta, P. (2011). Gilthead seabream (Sparusaurata) as carriers of SHV-12 and TEM-52 extended-spectrum beta-lactamases-containing Escherichia coli isolates. Foodborne Pathogens and Disease, 8(10), 1139–1141.

    Article  CAS  PubMed  Google Scholar 

  • Spanu, T., Fiori, B., D'Inzeo, T., Canu, G., Campoli, S., Giani, T., Palucci, I., Tumbarello, M., Sanguinetti, M., & Rossolini, G. M. (2012). Evaluation of the new NucliSENSEasyQ KPC test for rapid detection of Klebsiella pneumoniae carbapenemase genes (bla KPC). Journal of Clinical Microbiology, 50(8), 2783–2785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Su, H. C., Ying, G. G., Tao, R., Zhang, R. Q., Fogarty, L. R., & Kolpin, D. W. (2011). Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. Journal of Environmental Monitoring, 13(11), 3229–3236.

    Article  PubMed  Google Scholar 

  • Sun, K., Wang, H. L., Zhang, M., Xiao, Z. Z., & Sun, L. (2009). Genetic mechanisms of multi-antimicrobial resistance in a pathogenic Edwardsiellatarda strain. Aquaculture, 289(1–2), 134–139.

    Article  CAS  Google Scholar 

  • Syal, K., Iriya, R., Yang, Y., Yu, H., Wang, S., Haydel, S. E., Chen, H. Y., & Tao, N. (2016). Antimicrobial susceptibility test with plasmonic imaging and tracking of single bacterial motions on nanometer scale. ACS Nano, 10(1), 845–852.

    Article  CAS  PubMed  Google Scholar 

  • Varadi, L., Luo, J. L., Hibbs, D. E., Perry, J. D., Anderson, R. J., Orenga, S., & Groundwater, P. W. (2017). Methods for the detection and identification of pathogenic bacteria: Past, present and future. Chemical Society Reviews, 2017(46), 4818–4832.

    Article  Google Scholar 

  • Vega-Sánchez, V., Latif-Eugenín, F., Soriano-Vargas, E., Beaz-Hidalgo, R., Figueras, M. J., Aguilera-Arreola, M. G., & Castro-Escarpulli, G. (2014). Re-identification of Aeromonas isolates from rainbow trout and incidence of class 1 integron and β-lactamase genes. Veterinary Microbiology, 172(3–4), 528–533.

    Article  PubMed  Google Scholar 

  • Visnuvinayagam, S., Joseph, T. C., Murugadas, V., Chakrabarti, R., & Lalitha, K. V. (2015). Status on methicillin resistant and multiple drug resistant Staphylococcus aureus in fishes of Cochin and Mumbai coast, India. Journal of Environmental Biology, 36(3), 571.

    Google Scholar 

  • Von Ah, U., Wirz, D., & Daniels, A. U. (2009). Isothermal micro calorimetry–a new method for MIC determinations: Results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiology, 9(1), 1–14.

    Google Scholar 

  • Walker, G. T., Fraiser, M. S., Schram, J. L., Little, M. C., Nadeau, J. G., & Malinowski, D. P. (1992). Strand displacement amplification—An isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 20(7), 1691–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J. H., Lu, J., Zhang, Y. X., Wu, J., Luo, Y., & Liu, H. (2018). Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. Bioresource Technology, 253, 235–243.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. (2006). Report of a joint FAO/OIE/WHO expert consultation on antimicrobial use in aquaculture and antimicrobial resistance, Seoul, Republic of Korea, 13–16 June 2006.

    Google Scholar 

  • World Health Organization (WHO). (2014). Antimicrobial resistance: global report on surveillance. https://www.who.int/antimicrobial-resistance/publications/surveillancereport/en/

  • Xu, Y., Wang, C., Zhang, G., Tian, J., Liu, Y., Shen, X., & Feng, J. (2017). ISCR2 is associated with the dissemination of multiple resistance genes among Vibrio spp. and Pseudoalteromonas spp. isolated from farmed fish. Archives of Microbiology, 199(6), 891–896.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R. Q., Ying G. G., Su H. C., Zhou L. J., & Liu Y. S. (2013). Antibiotic resistance and genetic diversity of Escherichia coli isolates from traditional and integrated aquaculture in South China. Journal of Environmental Science and Health Part B, 48, 999–1013. https://doi.org/10.1080/03601234.2013.816611

  • Zhao, S., Wei, W., Fu, G., Zhou, J., Wang, Y., Li, X., Ma, L., & Fang, W. (2020). Application of biofertilizers increases fluoroquinolone resistance in Vibrio parahaemolyticus isolated from aquaculture environments. Marine Pollution Bulletin, 150, 110592.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Sivaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sivaraman, G.K., Visnuvinayagam, S., Vijayan, A. (2023). Trends in the Determination of Antimicrobial Resistance in Aquaculture and Fisheries. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics