Skip to main content

The Role of Arbuscular Mycorrhiza in Sustainable Agriculture

  • Chapter
  • First Online:
Advances in Agricultural and Industrial Microbiology

Abstract

Eighty percent of plants, including field crops, vegetables, fruit trees, and ornamental and medicinal plants, have arbuscular mycorrhiza. Arbuscular mycorrhizal fungi form arbuscules in the endodermis of root tissue, and an extramatrical fine hyphal net. Arbuscular mycorrhizal fungi help in the management of diseases caused by fungi, fungal-like organisms, nematodes, bacteria, phytoplasmas, and physiological disorders by increasing the absorption of water and nutrient elements for plants, competing with pathogens for nutrients and establishment site, making changes in chemical constituents of plant tissues, changing the root structure, alleviating the environmental stresses, and increasing the population of useful bacteria in soil. They also contribute to optimum plant growth and improved nutrient absorption in heavy metal-contaminated soils. As a result, in disturbed lands, arbuscular mycorrhizal fungi are powerful biological restoratives. They will help to minimize the use of chemical fertilizers and pesticides, which are both detrimental to the environment and agricultural product consumers. The use of these beneficial fungi can increase crop production and establish sustainable nonchemical agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MS, Siddiqui ZA (2010) Effect of AM fungi on the plant growth and root-rot disease of chickpea. Am Eurasian J Agric Environ Sci 8:544–549

    Google Scholar 

  • Andrade SAL, Mazzafera P, Schiavinato MA et al (2009) Arbuscular mycorrhizal association in coffee. J Agric Sci 147(2):105–115. https://doi.org/10.1017/S0021859608008344

    Article  Google Scholar 

  • Avazzadeh-Mehrian Z, Sadravi M (2017) The effect of chemical properties of soil on symbiosis of apple and grape with arbuscular mycorrhizal fungi. J Soil Manage Sust Prod 7(1):115–125

    Google Scholar 

  • Biro I, Takacs T (2007) Effects of Glomus mosseae strains of different origin on plant macro and micronutrient uptake in Cd polluted and unpolluted soils. Acta Agron Hung 55(2):1–10. https://doi.org/10.1556/AAgr.55.2007.2.6

    Article  Google Scholar 

  • BÅ‚aszkowski J, Kovacs GM, Balazs TK et al (2010) Glomus africanum and G. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia 102(6):1450–1462. https://doi.org/10.3852/09-302

    Article  PubMed  Google Scholar 

  • Bodker L, Kjoller R, Rosendah S (1998) Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174. https://doi.org/10.1007/s005720050230

    Article  CAS  Google Scholar 

  • Castellanos-Morales V, Keiser C, Cárdenas-Navarro R et al (2011) The bio protective effect of AM root colonization against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in barley depends on the barley variety. Soil Biol Biochem 43(4):831–834. https://doi.org/10.1016/j.soilbio.2010.12.020

    Article  CAS  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2009) Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl Soil Ecol 41(3):336–341. https://doi.org/10.1016/j.apsoil.2008.12.006

    Article  Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC et al (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13(4):199–204. https://doi.org/10.1007/s00572-002-0215-4

    Article  CAS  PubMed  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37(1):101–106. https://doi.org/10.1016/j.soilbio.2004.06.011

    Article  CAS  Google Scholar 

  • Elsen A, Declerck S, de Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51. https://doi.org/10.1007/s005720100100

    Article  Google Scholar 

  • Fortin JA, Declerck S, Strullu D-G (2005) In vitro culture of mycorrhizas. In: Declerck S, Fortin JA, Strullu D-G (eds) Vitro culture of mycorrhizas. Soil biology, vol 4. Springer, Berlin, Heidelberg, pp 3–16. https://doi.org/10.1007/3-540-27331-X_1

    Chapter  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (1989) Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biol Biochem 21:165–167. https://doi.org/10.1016/0038-0717(89)90027-8

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gera Hol WH, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503. https://doi.org/10.3389/fmicb.2015.01280

    Article  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M et al (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42(2):130–140. https://doi.org/10.1016/j.fgb.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  • Hu JL, Lin XG, Wang JH et al (2010) Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere 20(5):586–593. https://doi.org/10.1016/S1002-0160(10)60048-3

    Article  CAS  Google Scholar 

  • Kaminska M, Klamkowski K, Berniak H et al (2010) Effect of arbuscular mycorrhizal fungi inoculation on aster yellows phytoplasma-infected tobacco plants. Sci Hortic 125:500–503

    Article  Google Scholar 

  • Krüger M, Krüger C, Walker C et al (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193(4):970–984. https://doi.org/10.1111/j.1469-8137.2011.03962.x

    Article  PubMed  Google Scholar 

  • Mahadevan A (1991) Biochemical Aspects of Disease Resistance. Part II. Post Infectional Defense Mechanisms in Plants. Today and Tomorrows Publishers, New Delhi, 871p

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomeraceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characteristics. Mycologia 93:181–195. https://doi.org/10.1080/00275514.2001.12063147

    Article  Google Scholar 

  • Neeraj KS (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295. https://doi.org/10.1016/j.ejsobi.2011.07.002

    Article  Google Scholar 

  • Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular-forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ottawa, 182p

    Google Scholar 

  • Pfleger FL, Linderman RG (1994) Mycorrhizae and Plant Health. APS Press, St. Paul, MN, 85p

    Google Scholar 

  • Pinochet J, Calvet C, Camprubi A et al (1995) Interaction between the root-lesion nematode Pratylenchus vulnus and the mycorrhizal association of Glomus intraradices and Santa Lucia 64 cherry rootstock. Plant Soil 170:323–329. https://doi.org/10.1007/BF00010485

    Article  CAS  Google Scholar 

  • Pinochet J, Camprubi A, Calvet C (1993) Effects of the root-lesion nematode Pratylenchus vulnus and the mycorrhizal fungus Glomus mosseae on the growth of EMLA-26 apple rootstock. Mycorrhiza 4:79–83. https://doi.org/10.1007/BF00204062

    Article  Google Scholar 

  • Ray P (2020) Mycorrhizae and its scope in agriculture. In: Nayak SK, Mishra BB (eds) Frontiers in soil and environmental microbiology, 1st edn. CRC Press, Boca Raton, pp 73–80. https://doi.org/10.1201/9780429485794-8

    Chapter  Google Scholar 

  • Sadravi M (2000) Role of mycorrhizal fungi in the stabilization of running sands and desert revegetation. In: Abstracts of Regional Congress of Durable Extention in Deserts Restoration, Yazd, Iran, p 63

    Google Scholar 

  • Sadravi M (2002) Five Glomus species of arbuscular mycorrhizal fungi from Iran. J Agric Sci Nat Resour 9:15–30

    Google Scholar 

  • Sadravi M (2003) Mycorrhizal fungi of soybean, sunflower and sesame in Golestan Province of Iran. In: Abstracts of First National Oilseeds Congress. Gorgan, Iran, p 6

    Google Scholar 

  • Sadravi M (2004) Seven fungi new for Iran. J Agric Sci Nat Resour 11(3):71–78

    Google Scholar 

  • Sadravi M (2005) Role of mycorrhizal fungi in increasing growth, yield and resistance in pulse crops. In: Abstracts of First Pulse Crops Congress of Iran. Ferdowsi University of Mashhad, Mashhad, Iran, p 132

    Google Scholar 

  • Sadravi M (2006a) Arbuscular mycorrhizal fungi of wheat in northeast Iran. In: Abstracts of 8th International Mycological Congress. Cairns, QLD, Australia, p 86

    Google Scholar 

  • Sadravi M (2006b) Comparison population and species richness of arbuscular mycorrhizal fungi between six field crops. In: Abstracts of 17th Plant Protection Congress of Iran. University of Tehran, Karaj, Iran, p 180

    Google Scholar 

  • Sadravi M (2006c) Effect of crops rotation on population of mycorrhizal fungi of wheat. J Agric Sci Nat Resour 13:90–98

    Google Scholar 

  • Sadravi M (2006d) Establishment of four arbuscular mycorrhizal fungi in tomato’s root on minimal M medium. In: Abstracts of 17th Plant Protection Congress of Iran. University of Tehran, Karaj, Iran, p 200

    Google Scholar 

  • Sadravi M (2007) Arbuscular mycorrhizal fungi of wheat fields in the Golestan Province. Rostaniha 7:129–140

    Google Scholar 

  • Sadravi M (2010) Couch grass new host for arbuscular mycorrhizal fungus Gigaspora gigantea. In: Abstracts of 19th Iranian Plant Protection Congress. Iranian Institute of Plant Protection Researches, Tehran, Iran, p 111

    Google Scholar 

  • Sadravi M, Gharacheh N (2015) Arbuscular mycorrhizal fungi of pulse crops in southwest Iran. In: Abstracts of Asian Mycological Congress, 7–10 October 2015. Goa University, Goa, India, p 172

    Google Scholar 

  • Sadravi M, Moshiri-Rezvany R (2019) Biodiversity of arbuscular mycorrhizal fungi of seven ornamental plants in northeast Iran. In: Abstracts of 4th Iranian Mycological Congress. Sari Agricultural Sciences and Natural Resources University, Sari, Iran, p 10

    Google Scholar 

  • Sadravi M, Seifi E (2002) Mycorrhizal fungi of olive trees in Golestan province. In: Abstracts of Second Golestan Province Researches Projects Congress, Gorgan, Iran, p 60

    Google Scholar 

  • Sadravi M, Mohamadi-Goltapeh E, Blaszkowski J, Minasian V, Alizadeh A (1999) Four vesicular-arbuscular mycorrhizal fungi of Iran. Seed Plant 15:9–24

    Google Scholar 

  • Sadravi M, Mohamadi-Goltapeh E, Blaszkowski J et al (2000) Seven cereal vesicular–arbuscular mycorrhizal fungi of Iran. In: Abstracts of 14th Plant Protection Congress of Iran. University of Tehran, Karaj, Iran, p 27

    Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the Identification of VA Mycorrhizal Fungi. Synergistic Publications, Gainesville, FL, 286p

    Google Scholar 

  • Schutzenduble A, Polle A (2001) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal Symbiosis, 3rd edn. Elsevier, London, 815p

    Google Scholar 

  • Srivastava R, Khalid A, Singh US et al (2009) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31. https://doi.org/10.1016/j.biocontrol.2009.11.012

    Article  Google Scholar 

  • Sudova R, Vosatka M (2007) Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant Soil 296(1):77–83. https://doi.org/10.1007/s11104-007-9291-8

    Article  CAS  Google Scholar 

  • Tahat MM, Sijam K, Othman R (2010) Mycorrhizal fungi as a biocontrol agent. Plant Pathol J 9(4):198–207. https://doi.org/10.3923/ppj.2010.198.207

    Article  Google Scholar 

  • Tahmatsidou V, O’Sullivan J, Cassells AC et al (2006) Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria ananassa cv. selva). Appl Soil Ecol 32(3):316–324. https://doi.org/10.1016/j.apsoil.2005.07.008

    Article  Google Scholar 

  • Tarkka MT, Frey-Klett P (2008) Mycorrhiza helper bacteria. In: Varma A (ed) Mycorrhiza, state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer-Verlag, Berlin Heidelberg, Germany, pp 113–134. https://doi.org/10.1007/978-3-540-78826-3_6

    Chapter  Google Scholar 

  • Watanarojanaporn N, Boonkerda N, Wongkaewb S et al (2011) Selection of arbuscular mycorrhizal fungi for citrus growth promotion and Phytophthora suppression. Sci Hortic 128(4):423–433. https://doi.org/10.1016/j.scienta.2011.02.007

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Al-Ani LKT et al (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11(1):1060–1456. https://doi.org/10.5943/mycosphere/11/1/8

    Article  Google Scholar 

  • Wong CC, Wu SC, Kuek C et al (2007) The role of mycorrhizae associated with Votive grown in Pb-Zn contaminated soils: greenhouse study. Restor Ecol 15:60–67. https://doi.org/10.1111/j.1526-100X.2006.00190.x

    Article  Google Scholar 

  • Zhong Qun H, Chao Xing H, Zhi Bin Z et al (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B-Biointerfaces 59(2):128–133. https://doi.org/10.1016/j.colsurfb.2007.04.023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sadravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadravi, M. (2022). The Role of Arbuscular Mycorrhiza in Sustainable Agriculture. In: Nayak, S.K., Baliyarsingh, B., Singh, A., Mannazzu, I., Mishra, B.B. (eds) Advances in Agricultural and Industrial Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-16-9682-4_4

Download citation

Publish with us

Policies and ethics