Skip to main content

Structure Functions for Numerical Shocks

  • Chapter
  • First Online:
Numerical Fluid Dynamics

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 755 Accesses

Abstract

In this chapter, we will present an in-depth analysis of the structure of numerical shocks. Our analysis will feature the structure function, a simple technique to generate high-fidelity data for the structure of the numerical shock. We will describe two ODE models to analyze that data in terms of shock width, overshoot, and the dissipation that is explicit in the equations and implicit in the discretization. We will briefly summarize the methodology of shock capturing as employed in Lagrangian simulations and apply our ODE models to shocks generated by standard artificial viscosity formulations. We will review the recent application of finite scale theory to the structure of physical shocks, revealing the analogies between physical and numerical shocks, and exploiting them to design a new shock-capturing strategy. We will also consider shocks generated in nonoscillatory Eulerian simulations and compare their structure with comparable Lagrangian simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albright, J., Shashkov, M.: Locally adaptive artificial viscosity strategies for Lagrangian hydrodynamics. Comput. Fluids 205, 104580 (2020)

    Google Scholar 

  2. Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497–513 (1976)

    Article  Google Scholar 

  3. Becker, R.: “Stoßbwelle und detonation,” (In German). Zeitschrift für Physik 8, 321–362 (1922)

    Article  Google Scholar 

  4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84

    Google Scholar 

  5. Bird, G.A.: The velocity distribution function within a shock wave. J. Fluid Mech. 30, 479–487 (1967)

    Article  Google Scholar 

  6. Boris, J.P., Book, D.L.: Flux-corrected transport: 1. SHASTA, A fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Article  Google Scholar 

  7. Campbell, J.C., Shashkov, M.J.: A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172, 739–765 (2001)

    Google Scholar 

  8. Caramana, E.C., Shashkov, M.J., Whalen, P.P: Formulations of artificial viscosity for multi-dimensional shock wave computations. J. Comput. Phys. 144, 70–97 (1998)

    Google Scholar 

  9. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge, UK (1970)

    Google Scholar 

  10. Christiansen, R.B.: Godunov methods on a staggered mesh: an improved artificial viscosity. Lawrence Livermore National Laboratory Report, UCRL-JC-105269 (1981)

    Google Scholar 

  11. Coggeshall, S.V.: Group–invariant solutions of hydrodynamics. In: Leutloff, D., Srivastava, R.C. (eds.) Computational Fluid Dynamics. Springer, Berlin (1995)

    Google Scholar 

  12. Fjordholm, U.S., Kappeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17, 763–827 (2017)

    Google Scholar 

  13. Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. U.S.A. 68, 1686–1688 (1971)

    Google Scholar 

  14. Godunov, S.K.: Ph.D. Dissertation: Difference Methods for Shock Waves, Moscow State University (1954)

    Google Scholar 

  15. Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, Cambridge, UK (2007)

    Google Scholar 

  16. Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230, 4248–4267 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  18. Johnson, J.N., Chéret, R.: Classic Papers in Shock Compression Science. Springer, NY (1998)

    Google Scholar 

  19. Jordan, P.M., Keiffer, R.S.: A note on finite-scale Navier-Stokes theory: the case of constant viscosity, strictly adiabatic flow. Phys. Lett. A 379, 124–130 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kluwick, A.: Shock discontinuities: from classical to non-classical shocks. Acta. Mech. 229, 515–533 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer, New York (2010)

    Google Scholar 

  22. Landshoff, R.: A numerical method for treating fluid flow in the presence of shocks. Los Alamos Scientific Laboratory Report LA-1930 (1955)

    Google Scholar 

  23. Lax, P.D.: On discontinuous initial value problems for nonlinear equations and finite differences. Los Alamos Scientific Laboratory Report LAMS–1332 (1952)

    Google Scholar 

  24. Majda, A., Osher, S.: Propagation of error into regions of smoothness for accurate difference approximations to hyperbolic equations. Commun. Pure Appl. Math. 30, 671–705 (1977)

    Article  MathSciNet  Google Scholar 

  25. Margolin, L.G.: Finite-scale equations for compressible fluid flow. Phil. Trans. R. Soc. A 367, 2861–2871 (2009)

    Article  MathSciNet  Google Scholar 

  26. Margolin, L.G.: Finite scale theory: the role of the observer in classical fluid flow. Mech. Res. Commun. 57, 10–17 (2014)

    Article  Google Scholar 

  27. Margolin, L.G.: Scale matters. Phil. Trans. R. Soc. A 376, 20170235 (2018)

    Article  MathSciNet  Google Scholar 

  28. Margolin, L.G.: The reality of artificial viscosity. Shock Waves 29, 27–35 (2019)

    Article  Google Scholar 

  29. Margolin, L.G., Plesko, C.S.: Discrete regularization. Evol. Equ. Control Theory 8, 117–137 (2019)

    Article  MathSciNet  Google Scholar 

  30. Margolin, L.G., Plesko, C.S., Reisner, J.M.: A finite scale model for shock structure. Phys. D 403, 132308 (2020)

    Google Scholar 

  31. Margolin, L.G., Plesko, C.S., Reisner, J.M.: Finite scale theory: predicting nature’s shocks. Wave Motion 98, 102647 (2020)

    Google Scholar 

  32. Margolin, L.G., Reisner, J.M., Jordan, P.M.: Entropy in self-similar shock profiles. Int. J. Nonlinear Mech. 95, 333–346 (2017)

    Article  Google Scholar 

  33. Margolin, L.G., Rider, W.J.: A rationale for implicit turbulence modeling. Int. J. Num. Meth. Fluids 39, 821–841 (2002)

    Article  Google Scholar 

  34. Margolin, L.G., Shashkov, M.: Finite volume methods and the equations of finite scale. Int. J. Num. Meth. Fluids 50, 991–1002 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Margolin L.G., Shashkov, M.: Remapping, recovery and repair on a staggered grid. Comput. Methods Appl Mech. Engrg. 193, 4139–4155 (2004)

    Google Scholar 

  36. Margolin, L.G., Smolarkiewicz, P.K., Sorbjan, Z.: Large-eddy simulations of convective boundary layers using nonoscillatory differencing. Phys. D 133, 390–397 (1999)

    Google Scholar 

  37. Margolin, L.G., Vaughan, D.E.: Traveling wave solutions for finite scale equations. Mech. Res. Commun. 45, 64–69 (2012)

    Article  Google Scholar 

  38. Mattsson, A.E., Rider, W.J.: Artificial viscosity: back to basics. Int. J. Num. Meth. Fluids 77, 400–417 (2015)

    Article  MathSciNet  Google Scholar 

  39. McHardy, J.D., Albright, E.J., Ramsey S.D., Schmidt, J.H.: Group–invariant solutions for one dimensional inviscid hydrodynamics. AIP Adv. 9, 085113

    Google Scholar 

  40. Merriam, M.L.: Smoothing and the second law. Comput. Meth. Appl. Mech. Eng. 64, 177–193 (1987)

    Article  MathSciNet  Google Scholar 

  41. Morduchow, M., Libby, P.A.: On a complete solution of the one–dimensional flow equations of a viscous, heat–conducting, compressible gas. J. Aeronaut. Sci. 16, 674–684, and 704 (1949)

    Google Scholar 

  42. Noh, W.F.: Errors for calculations of strong shocks using an artificial viscosity and an artificial heat conduction. J. Comput. Phys. 72, 78–120 (1987)

    Article  Google Scholar 

  43. Oran, E.S., Boris, J.P.: Computing turbulent shear flows—a convenient conspiracy. Comput. Phys. 7, 523–533 (1993)

    Article  Google Scholar 

  44. Peierls, R.: Letter to J. von Neumann, March, 1948," reproduced in Los Alamos National Laboratory report LA-UR-20-28408 (1948)

    Google Scholar 

  45. Rayleigh, L.: Aerial plane waves of finite amplitude. Proc. R. Soc. Lond. Ser. A 84, 247–284 (1910)

    Article  Google Scholar 

  46. Reisner, J., Serencsa, J., Shkoller, S.: A space-time smooth artificial viscosity method for nonlinear conservation laws. J. Comput. Phys. 235, 912–933 (2013)

    Article  MathSciNet  Google Scholar 

  47. Richtmyer, R.D.: Proposed numerical method for calculation of shocks. Los Alamos Sci. Lab. Rep. LA-671, 1–18 (1948a)

    Google Scholar 

  48. Richtmyer, R.D.: Proposed numerical method for calculation of shocks, II. Los Alamos Sci. Lab. Rep. LA-657, 1–33 (1948b)

    Google Scholar 

  49. Rider, W.J.: Revisiting wall heating. J. Comput. Phys. 162, 395–410 (2000)

    Article  Google Scholar 

  50. Robben, F., Talbot, L.: “Measurement of shock wave thickness by the electron beam fluorescence method. Phys. Fluids 9, 633–643 (1966)

    Google Scholar 

  51. Roy, C.J.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205, 131–156

    Google Scholar 

  52. Runnels, S.R., Margolin, L.G.: An integrated study of numerical shock shape, artificial viscosity, and plasticity. Los Alamos Natl. Lab. Rep. LA-UR-13-24226 (2013)

    Google Scholar 

  53. Salas, M.D.: The curious events leading to the theory of shock waves. Shock Waves 16, 477–487 (2007)

    Article  Google Scholar 

  54. Schmidt, B.: Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39, 361–373 (1969)

    Article  Google Scholar 

  55. Schultz–Grunow, F., Frohn, A.: Density distribution in shock waves traveling in rarefied gases. In: Rarefied Gas Dynamics, Proceedings of the IVth International Symposium, vol. I, Ed. deLeeuw, pp. 250–264, Academic, NYC (1965)

    Google Scholar 

  56. Stokes, G.G.: On a difficulty in the theory of sound. Philoso. Mag. XXXIII, 71–79 (1850)

    Google Scholar 

  57. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Num. 12, 451–512 (2003)

    Article  MathSciNet  Google Scholar 

  58. Taylor, G.I.: The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. Ser. A 84, 371–377 (1910)

    Article  Google Scholar 

  59. Thomas, L.H.: Note on Becker’s theory of the shock front. J. Chem. Phys. 12, 449–453 (1944)

    Google Scholar 

  60. van Leer, B.: Towards the ultimate conservative difference scheme. Part IV. A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977)

    Article  Google Scholar 

  61. von Neumann, J., Richtmyer, R.D.: On the numerical solution of partial differential equations of parabolic type. Los Alamos Sci. Lab. Rep. LA-657, 1–17 (1947)

    Google Scholar 

  62. von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  Google Scholar 

  63. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Google Scholar 

  64. Wilkins, M.L.: Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36, 281–303 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge many illuminating discussions with Roy Baty, Don Burton, Tony Hirt, James Quirk, Scott Runnels, Misha Shashkov, and Diane E. Vaughan. This work was performed under the auspices of the U.S. Department of Energy’s NNSA by the Los Alamos National Laboratory, is managed by Triad National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Margolin .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Margolin, L.G., Ramsey, S.D. (2022). Structure Functions for Numerical Shocks. In: Zeidan, D., Merker, J., Da Silva, E.G., Zhang, L.T. (eds) Numerical Fluid Dynamics. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-16-9665-7_1

Download citation

Publish with us

Policies and ethics