Skip to main content

Optical Flow Video Frame Interpolation Based MRI Super-Resolution

  • Conference paper
  • First Online:
Machine Intelligence and Smart Systems

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Flow-based video frame interpolation (VFI) is the process of synthesizing new frames in between the original frames in a video by estimating the motion of pixels. In this paper, usage of flow-based VFI methods has been proposed on 3D MRI images in order to convert low-resolution (LR) images into their high-resolution (HR) counterparts. This paper demonstrates the process of increasing the spatial resolution of the 3D image successively along all three axes to obtain a super-resolution (SR) 3D image using VFI. Quantitative analysis of the results proposes that this method of 3D spatial enhancement outperforms the previously proposed methods in the majority of the circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weishaupt B, Köchli D, Victor D, Marincek (2006) How does MRI work? An introduction to the physics and function of magnetic resonance imaging

    Google Scholar 

  2. Huppertz HJ, Wellmer J, Staack AM, Altenmüller DM, Urbach H, Kröll J (2008) Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia. Epilepsia 49(5):772–785. https://doi.org/10.1111/j.1528-1167.2007.01436.x

    Article  Google Scholar 

  3. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  4. Wu CY, Singhal N, Krähenbühl P (2018) Video compression through image interpolation. Lecture notes computer science (including Subseries lecture notes artificial intelligence lecture notes bioinformatics), vol 11212. LNCS, pp 425–440. https://doi.org/10.1007/978-3-030-01237-3_26

  5. Turaga P, Chellappa R, Veeraraghavan A (2010) Advances in video-based human activity analysis: challenges and approaches, 1st ed, vol 80, no. C. Elsevier Inc.

    Google Scholar 

  6. Bao W, Lai WS, Ma C, Zhang X, Gao Z, Yang MH (2019) Depth-aware video frame interpolation. In: Proceedings of IEEE computer social conference computer vision pattern recognition, vol 2019, pp 3698–3707. https://doi.org/10.1109/CVPR.2019.00382

  7. Huang Z, Zhang T, Heng W, Shi B, Zhou S (2020) RIFE: real-time intermediate flow estimation for video frame interpolation 2020 (Online). Available: http://arxiv.org/abs/2011.06294

  8. Oktay O et al (2016) Multi-input cardiac image super-resolution using convolutional neural networks. Lecture notes computer science (including subseries lecture notes artificial intelligence lecture notes bioinformatics), vol 9902. LNCS, pp 246–254. https://doi.org/10.1007/978-3-319-46726-9_29

  9. Pham CH, Ducournau A, Fablet R, Rousseau F (2017) Brain MRI super-resolution using deep 3D convolutional networks. In: Proceedings of international symposium biomedical imaging, pp 197–200. https://doi.org/10.1109/ISBI.2017.7950500

  10. Sánchez I, Vilaplana V (2018) Brain MRI super-resolution using 3D generative adversarial networks, arXiv, no. Midl, pp 1–8

    Google Scholar 

  11. Chen Y, Xie Y, Zhou Z, Shi F, Christodoulou AG, Li D (2018) Brain MRI super resolution using 3D deep densely connected neural networks. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 739–742. https://doi.org/10.1109/ISBI.2018.8363679

  12. Chen Y, Christodoulou AG, Zhou Z, Shi F, Xie Y, Li D (2020) MRI super-resolution with GAN and 3D multi-level densenet: smaller, faster, and better, arXiv, no. Debiao Li

    Google Scholar 

  13. Wang Y, Teng Q, He X, Feng J, Zhang T (2019) CT-image of rock samples super resolution using 3D convolutional neural network. Comput Geosci 133(24):104314. https://doi.org/10.1016/j.cageo.2019.104314

  14. Chaudhari AS et al (2018) Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 80(5):2139–2154. https://doi.org/10.1002/mrm.27178

    Article  Google Scholar 

  15. Jurek J, Kociński M, Materka A, Elgalal M, Majos A (2020) CNN-based superresolution reconstruction of 3D MR images using thick-slice scans. Biocybern Biomed Eng 40(1):111–125. https://doi.org/10.1016/j.bbe.2019.10.003

    Article  Google Scholar 

  16. Du J et al (2020) Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network. Neurocomputing 392:209–220. https://doi.org/10.1016/j.neucom.2018.10.102

  17. Shi J et al (2019) MR image super-resolution via wide residual networks with fixed skip connection. IEEE J. Biomed Heal Inform 23(3):1129–1140. https://doi.org/10.1109/JBHI.2018.2843819

    Article  Google Scholar 

  18. McDonagh S et al (2017) Context-sensitive super-resolution for fast fetal magnetic resonance imaging. Lecture notes computer science (including Subseries lecture notes artificial intelligence lecture notes bioinformatics), vol 10555 LNCS, pp 116–126. https://doi.org/10.1007/978-3-319-67564-0_12

  19. Thurnhofer-Hemsi K, López-Rubio E, Domínguez E, Luque-Baena RM, Roé-Vellvé N (2020) Deep learning-based super-resolution of 3D magnetic resonance images by regularly spaced shifting. Neurocomputing 398:314–327. https://doi.org/10.1016/j.neucom.2019.05.107

    Article  Google Scholar 

  20. Zhao C, Carass A, Dewey BE, Prince JL (2018) Self super-resolution for magnetic resonance images using deep networks. Department of Electrical and Computer Engineering , The Johns Hopkins University, Baltimore , MD 21218 USA Department of Computer Science , The Johns Hopkins University , Baltimore , MD 2121,” Electrical Engineering System Science, no. Isbi, pp 365–368

    Google Scholar 

  21. Du J, Wang L, Gholipour A, He Z, Jia Y (2019) Accelerated super-resolution MR image reconstruction via a 3D densely connected deep convolutional neural network. In: Proceedings 2018 IEEE international conference bioinformatics biomedical BIBM, pp 349–355. https://doi.org/10.1109/BIBM.2018.8621073

  22. Zeng K, Zheng H, Cai C, Yang Y, Zhang K, Chen Z (2018) Simultaneous single- and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput Biol Med 99(January):133–141. https://doi.org/10.1016/j.compbiomed.2018.06.010

    Article  Google Scholar 

  23. Jiang H, Sun D, Jampani V, Yang MH, Learned-Miller E, Kautz J (2018) Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings IEEE computer social conference computing vision pattern recognition, pp 9000–9008. https://doi.org/10.1109/CVPR.2018.00938

  24. Xu X, Siyao L, Sun W, Yin Q, Yang MH (2019) Quadratic video interpolation. arXiv, no. NeurIPS

    Google Scholar 

  25. Menze BH et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  26. Bakas S et al (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4 170117. https://doi.org/10.1038/sdata.2017.117

  27. Bakas S et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS Challenge, (Online). Available: http://arxiv.org/abs/1811.02

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhail Gulzar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gulzar, S., Arora, S. (2022). Optical Flow Video Frame Interpolation Based MRI Super-Resolution. In: Agrawal, S., Gupta, K.K., Chan, J.H., Agrawal, J., Gupta, M. (eds) Machine Intelligence and Smart Systems. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-9650-3_35

Download citation

Publish with us

Policies and ethics