Skip to main content

EVGAN: Optimization of Generative Adversarial Networks Using Wasserstein Distance and Neuroevolution

  • Conference paper
  • First Online:
Evolutionary Computing and Mobile Sustainable Networks

Abstract

Generative Adversarial Networks (or called GANs) is a generative type of model which can be used to generate new data points from the given initial dataset. In this paper, the training problems of GANs such as ‘vanishing gradient’ and ‘mode collapse’ are reduced using the proposed EVGAN which stands for ‘evolving GAN’. An improvement was done with the help of using Wasserstein loss function instead of the Minimax loss in the traditional GAN. Also, coevolution ensures that the best models from both the generator and discriminator pool are selected for further evolution thereby making the training of GAN more stable. Speciation is also included with a threshold of min. no of species thereby helping in increasing the diversity of the generated image. The model is evaluated in the MNIST dataset and shows better performance in accuracy as well as convergence when compared to the traditional GAN and WGAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of NIPS, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  2. Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks (2016). arXiv preprint arXiv:1701.00160

  3. Fedus, W., Rosca, M., Lakshminarayanan, B., Dai, A.M., Mohamed, S., Goodfellow, I.: Many paths to equilibrium: GANs do not need to decrease a divergence at every step. In: Proceedings of ICLR 2018 (2018)

    Google Scholar 

  4. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Conference paper at ICLR 2016 (2016)

    Google Scholar 

  5. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: Proceedings of CVPR (2017)

    Google Scholar 

  6. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. Published as a conference paper at ICLR (2018)

    Google Scholar 

  7. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: Proceedings of MLR 2017

    Google Scholar 

  8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: improved training of Wasserstein GANs. In: NIPS proceedings, pp. 1767–1777 (2017)

    Google Scholar 

  9. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training Gans. In: Advances in Neural Information Processing Systems, pp. 2226–2234 (2016)

    Google Scholar 

  10. Liu, S., Bousquet, O., Chaudhuri, K.:. Approximation and convergence properties of generative adversarial learning (2017). arXiv preprint arXiv:1705.08991

  11. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. Proc. IEEE 23(6), 921–934 (2019)

    Google Scholar 

  12. Costa, V., Lourenço, N., Machado, P.: Coevolution of generative adversarial networks. In: International Conference on the Applications of Evolutionary Computation, pp. 473–487. Springer (2019)

    Google Scholar 

  13. Nambiar, S., Jeyakumar, G.: Co-operative Co-evolution based hybridization of differential evolution and particle swarm optimization algorithms in distributed environment. In: Emerging Research in Computing, Information, Communication and Applications: ERCICA 2015, vol. 2. Springer India, New Delhi, pp. 175–187 (2015)

    Google Scholar 

  14. Sree, K., Jeyakumar, G.: An evolutionary computing approach to solve object identification problem in image processing applications. J. Comput. Theor. Nanosci. 17, 439–444 (2020)

    Google Scholar 

  15. Reddy, R.R., Jeyakumar, G.: Differential evolution with added components for early detection and avoidance of premature convergence in solving unconstrained global optimization problems. Int. J. Appl. Eng. Res. 10(5), 13579–13594 (2015)

    Google Scholar 

  16. Costa, V., Lourenco, N., Machado, P.: Exploring the evolution of GANs through quality diversity. In: GECCO (2020)

    Google Scholar 

  17. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality stability and variation. In: Proceedings of International Conference on Learning Representations (ICLR), pp. 1–26 (2018)

    Google Scholar 

  18. Dhanalakshmy, D.M., Pranav, P., Jeyakumar, G.: A survey on adaptation strategies for mutation and crossover rates of differential evolution algorithm. Int. J. Adv. Sci. Eng. Inf. Technol. (IJASEIT) (Scopus) 6(5), 613–623 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nair, V.K., Shunmuga Velayutham, C. (2022). EVGAN: Optimization of Generative Adversarial Networks Using Wasserstein Distance and Neuroevolution. In: Suma, V., Fernando, X., Du, KL., Wang, H. (eds) Evolutionary Computing and Mobile Sustainable Networks. Lecture Notes on Data Engineering and Communications Technologies, vol 116. Springer, Singapore. https://doi.org/10.1007/978-981-16-9605-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9605-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9604-6

  • Online ISBN: 978-981-16-9605-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics