Skip to main content

The Design and Implementation of Blockchain-Assisted User Public-Private Key Generation Method

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1544))

Included in the following conference series:

  • 886 Accesses

Abstract

The rapid development of network technology has brought new challenges to data security. As the first gateway of a certain mobile internet system, access authentication is an essential step that guarantees the internal security of the network. However, there are some problems in traditional cryptosystem-based authentication mechanisms, such as certificate management problem and centralized key escrow problem. Centralized storage of user information is restricted by the server, the security of the server is not within the user’s control, the stability of the server cannot be guaranteed, and personal privacy on the server may be leaked. In this paper, we focus on the private key escrow problem caused by the Private Key Generator (PKG) in Identity-Based Cryptosystems (IBC) mechanism and propose a Blockchain-assisted user public-private key generation scheme (BAKG) which introduces the blockchain to improve the robustness and reliability of key management. In BAKG, the user’s private key is determined by itself through combining the partial private keys from different PKGs, which prevents the risk of private key exposure caused by a single PKG. Meanwhile, based on the theory of the Combined Public Key (CPK) algorithm, we have designed a feasible blockchain-based key generation logic and developed a prototype authentication system based on the above concept. We further analyze the security of BAKG and the analytical results show that BAKG can meet various security requirements. In addition, according to the performance evaluation results, BAKG has good performance in both read/write consensus and different key length calculations, which means it has good potential for lightweight authentication applications.

This research was supported by the project under contract No. 2019-JCJQ-ZD-182-00-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, S., Guan, J., Wu, Y., Xu, K., Xu, M.: Toward secure and lightweight access authentication in SAGINs. IEEE Wirel. Commun. 27(6), 75–81 (2020)

    Article  Google Scholar 

  2. Anada, H.: Decentralized multi-authority anonymous authentication for global identities with non-interactive proofs. J. Internet Serv. Inf. Secur. (JISIS) 10(4), 23–37 (2020)

    Google Scholar 

  3. Duong, D.H., Susilo, W., Trinh, V.C.: Wildcarded identity-based encryption with constant-size ciphertext and secret key. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 11(2), 74–86 (2020)

    Google Scholar 

  4. Loh, J.-C., Heng, S.-H., Tan, S.-Y., Kurosawa, K.: On the invisibility and anonymity of undeniable signature schemes. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 11(1), 18–34 (2020)

    Google Scholar 

  5. Pöhn, D., Hommel, W.: Universal identity and access management framework for future ecosystems. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 12(1), 64–84 (2021)

    Google Scholar 

  6. Ribalta, C.N., Lombard-Platet, M., Salinesi, C., Lafourcade, P.: Blockchain mirage or silver bullet? A requirements-driven comparative analysis of business and developers’ perceptions in the accountancy domain. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. 12(1), 85–110 (2021)

    Google Scholar 

  7. Lee, Y., Son, B., Park, S., Lee, J., Jang, H.: A survey on security and privacy in blockchain-based central bank digital currencies. J. Internet Serv. Inf. Secur. (JISIS) 11(3), 16–29 (2021)

    Google Scholar 

  8. Alizadeh, M., Andersson, K., Schelen, O.: A survey of secure internet of things in relation to blockchain. J. Internet Serv. Inf. Secur. (JISIS) 10(3), 47–75 (2020)

    Google Scholar 

  9. König, L., Unger, S., Kieseberg, P., Tjoa, S.: The risks of the blockchain a review on current vulnerabilities and attacks. J. Internet Serv. Inf. Secur. (JISIS) 10(3), 110–127 (2020)

    Google Scholar 

  10. Hui, H., et al.: Survey on blockchain for internet of things. J. Internet Serv. Inf. Secur. (JISIS) 9(2), 1–30 (2019)

    Google Scholar 

  11. Guan, J., Wu, Y., Yao, S., Zhang, T., Su, X., Li, C.: BSLA: blockchain-assisted secure and lightweight authentication for SGIN. Comput. Commun. 176, 46–55 (2021). https://www.sciencedirect.com/science/article/pii/S0140366421001997

  12. Kohnfelder, L.M.: Towards a practical public-key cryptosystem. Ph.D. dissertation, Massachusetts Institute of Technology (1978)

    Google Scholar 

  13. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2 (2008)

    Google Scholar 

  14. Clark, J., Van Oorschot, P.C.: SoK: SSL and HTTPS: revisiting past challenges and evaluating certificate trust model enhancements. In: 2013 IEEE Symposium on Security and Privacy, pp. 511–525. IEEE (2013)

    Google Scholar 

  15. Laurie, B.: Certificate transparency. Commun. ACM 57(10), 40–46 (2014)

    Article  Google Scholar 

  16. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  17. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  18. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_34

    Chapter  Google Scholar 

  19. Ryu, G., Lee, K., Park, S., Lee, D.H.: Unbounded hierarchical identity-based encryption with efficient revocation. In: Kim, H., Choi, D. (eds.) WISA 2015. LNCS, vol. 9503, pp. 122–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31875-2_11

    Chapter  Google Scholar 

  20. Fida, M.-R., Ali, M., Adnan, A., Arsalaan, A.S.: Region-based security architecture for DTN. In: 2011 Eighth International Conference on Information Technology: New Generations, pp. 387–392. IEEE (2011)

    Google Scholar 

  21. Guo, L., Wang, J., Yau, W.-C.: Efficient hierarchical identity-based encryption system for internet of things infrastructure. Symmetry 11(7), 913 (2019)

    Article  Google Scholar 

  22. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: Proceedings of the 4th ACM Conference on Computer and Communications Security, CCS 1997, pp. 78–91. Association for Computing Machinery, New York (1997). https://doi.org/10.1145/266420.266439

  23. Nan, X., Chen, Z.: A Profile to Network Security Techniques. National Defense Industry Press, Beijing (2003)

    Google Scholar 

  24. Sakai, R., Kasahara, M., et al.: ID based cryptosystems with pairing on elliptic curve. IACR Cryptology ePrint Archive, vol. 2003, p. 54 (2003)

    Google Scholar 

  25. Yu, M., Huang, X., Jiang, L., Liang, R.: Combined public key cryptosystem based on conic curves over the ring Zn. In: 2008 International Conference on Computer Science and Software Engineering, vol. 3, pp. 631–634. IEEE (2008)

    Google Scholar 

  26. Shi, Y., Qiu, S., Liu, J., Ma, T.: Novel efficient lattice-based IBE schemes with CPK for fog computing. Math. Biosci. Eng.: MBE 17(6), 8105–8122 (2020)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Q., Yuan, J., Guo, G., Gan, Y., Zhang, J.: An authentication key establish protocol for WSNs based on combined key. Wirel. Pers. Commun. 99(1), 95–110 (2018)

    Article  Google Scholar 

  28. Matsumoto, S., Reischuk, R.M.: IKP: turning a PKI around with decentralized automated incentives. In: IEEE Symposium on Security and Privacy (SP), pp. 410–426 (2017)

    Google Scholar 

  29. Wang, W., Hu, N., Liu, X.: BlockCAM: a blockchain-based cross-domain authentication model. In: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), pp. 896–901. IEEE (2018)

    Google Scholar 

  30. Zhou, B., Li, H., Xu, L.: An authentication scheme using identity-based encryption & blockchain. In: 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 00 556–00 561. IEEE (2018)

    Google Scholar 

  31. Cui, Z., et al.: A hybrid blockchain-based identity authentication scheme for multi-WSN. IEEE Trans. Serv. Comput. 13(2), 241–251 (2020)

    Google Scholar 

  32. Zhao, G., Di, B., He, H.: Design and implementation of the digital education transaction subject two-factor identity authentication system based on blockchain. In: 2020 22nd International Conference on Advanced Communication Technology (ICACT), pp. 176–180. IEEE (2020)

    Google Scholar 

  33. Huang, H., Chen, X.: Power mobile terminal identity authentication mechanism based on blockchain. In: International Wireless Communications and Mobile Computing (IWCMC), pp. 195–198. IEEE (2020)

    Google Scholar 

  34. F. open source working group. FISCO BCOS documentation (2020). https://fisco-bcos.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Lan, Z., Gao, X., Guan, J. (2022). The Design and Implementation of Blockchain-Assisted User Public-Private Key Generation Method. In: You, I., Kim, H., Youn, TY., Palmieri, F., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2021. Communications in Computer and Information Science, vol 1544. Springer, Singapore. https://doi.org/10.1007/978-981-16-9576-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9576-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9575-9

  • Online ISBN: 978-981-16-9576-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics