Skip to main content

The Medical Management of Spinal Tuberculosis

  • Chapter
  • First Online:
Tuberculosis of the Spine

Abstract

Anti-tubercular drugs have revolutionized the treatment of tuberculosis and have significantly reduced the mortality rates making them the mainstay in the management of uncomplicated spinal tuberculosis. The unique features of Mycobacterium tuberculosis, use of multiple drugs, development of drug resistance, and prolonged duration of treatment make anti-tubercular therapy challenging. The first-line drugs are the most potent, least toxic, and cheaper drugs in comparison to the second-line drugs. Side effects are common; therefore, a thorough knowledge of the pharmacological properties of drugs is essential. The current guidelines recommend daily dosing of fixed drug combinations. Though 9 to 12 months of therapy have been proven to be effective, there is still no consensus on treatment duration yet. In the light of emerging drug resistance, the second-line drugs are used frequently, and there is an unmet need for newer drugs with better safety profiles. Immunomodulators have the potential to be a valuable adjuvant to anti-tubercular drugs in increasing cure rates, decreasing the duration of therapy, and thereby decreasing drug resistance. Increased drug-sensitivity testing and ensuring compliance to anti-tubercular therapy is the key in mitigating the pandemic of tuberculosis and is fundamental to WHO’s “End TB” strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniel TM. The history of tuberculosis. Respir Med. 2006 Nov;100(11):1862–70.

    Article  PubMed  Google Scholar 

  2. Tuli SM. Tuberculosis of the skeletal system. JP Medical Ltd. 2016;

    Google Scholar 

  3. Raviglione MC, O’Brien RJ. Tuberculosis (Chapter 158: pages 1006-1020). Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jamison JL, Loscalzo J Eds Harrison’s Principles of Internal Medicine, 17th Edition McGraw-Hill, Inc, New York, USA. 2008.

    Google Scholar 

  4. Daniel TM. Hermann Brehmer and the origins of tuberculosis sanatoria. Int J Tuberc Lung Dis. 2011 Feb;15(2):161–2, i.

    CAS  PubMed  Google Scholar 

  5. Group BMJP. Treatment of pulmonary tuberculosis with streptomycin and para-amino-salicylic acid: a medical research council investigation. Br Med J. 1950 Nov 11;2(4688):1073–85.

    Article  Google Scholar 

  6. Group BMJP. Various combinations of isoniazid with streptomycin or with P.A.S. in the treatment of pulmonary tuberculosis: seventh report to the medical research council. Br Med J. 1955 Feb 19;1(4911):435–45.

    Article  Google Scholar 

  7. Controlled clinical trial of four 6-month regimens of chemotherapy for pulmonary tuberculosis. Second report. Second East African/British Medical Research Council Study. Am Rev Respir Dis. 1976 Sep;114(3):471–5.

    Google Scholar 

  8. Controlled trial of 6-month and 8-month regimens in the treatment of pulmonary tuberculosis: the results up to 24 months. Tubercle. 1979 Dec;60(4):201–10.

    Google Scholar 

  9. British Thoracic Society. A controlled trial of 6 months’ chemotherapy in pulmonary tuberculosis Final report: results during the 36 months after the end of chemotherapy and beyond. Br J Dis Chest. 1984 Jan;1(78):330–6.

    Article  Google Scholar 

  10. Toman K, Organization WH. Toman’s tuberculosis: case detection, treatment, and monitoring : questions and answers. World Health Organization; 2004. 350.

    Google Scholar 

  11. Five-year follow-up of a controlled trial of five 6-month regimens of chemotherapy for pulmonary tuberculosis. Hong Kong Chest Service/British Medical Research Council. Am Rev Respir Dis. 1987 Dec;136(6):1339–42.

    Google Scholar 

  12. Controlled trial of 2, 4, and 6 months of pyrazinamide in 6-month, three-times-weekly regimens for smear-positive pulmonary tuberculosis, including an assessment of a combined preparation of isoniazid, rifampin, and pyrazinamide. Results at 30 months. Hong Kong Chest Service/British Medical Research Council. Am Rev Respir Dis. 1991 Apr;143(4 Pt 1):700–6.

    Google Scholar 

  13. Grumbach F, Canetti G, Grosset J, le Lirzin M. Late results of long-term intermittent chemotherapy of advanced, murine tuberculosis: limits of the murine model. Tubercle. 1967 Mar;48(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  14. Lotte A, Hatton F, Perdrizet S, Rouillon A. A concurrent comparison of intermittent (Twice-Weekly) Isoniazid Plus Streptomycin and daily Isoniazid plus PAS in the domiciliary treatment of Pulmonary Tuberculosis; Tuberculosis Chemotherapy Centre. Madras Bull World Health Organ. 1964;31:247–71.

    CAS  PubMed  Google Scholar 

  15. Vilchèze C, Jacobs WR. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol. 2007;61:35–50.

    Article  PubMed  CAS  Google Scholar 

  16. Pansy F, Stander H, Donovick R. In vitro studies on isonicotinic acid hydrazide. Am Rev Tuberc. 1952 Jun;65(6):761–4.

    CAS  PubMed  Google Scholar 

  17. Mitchison DA, Selkon JB. The bactericidal activities of antituberculous drugs. Am Rev Tuberc. 1956 Aug;74(2 Part 2):109–16.

    CAS  PubMed  Google Scholar 

  18. Middlebrook G. Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am Rev Tuberc. 1952 Jun;65(6):765–7.

    CAS  PubMed  Google Scholar 

  19. Schaefer WB. The effect of isoniazid on growing and resting tubercle bacilli. Am Rev Tuberc. 1954 Jan;69(1):125–7.

    CAS  PubMed  Google Scholar 

  20. Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol. 2016 Nov;1(45):474–92.

    Article  CAS  Google Scholar 

  21. Hazbón MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2006 Aug;50(8):2640–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Blanchard JS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem. 1996;65:215–39.

    Article  CAS  PubMed  Google Scholar 

  23. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell. 2001 Mar 23;104(6):901–12.

    Article  CAS  PubMed  Google Scholar 

  24. Mitchison DA. Basic mechanisms of chemotherapy. Chest. 1979 Dec;76(6 Suppl):771–81.

    Article  CAS  PubMed  Google Scholar 

  25. Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis. 1998;79(1):3–29.

    Article  CAS  PubMed  Google Scholar 

  26. Konno K, Feldmann FM, McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967 Mar;95(3):461–9.

    CAS  PubMed  Google Scholar 

  27. McDermott W, Tompsett R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc. 1954 Oct;70(4):748–54.

    CAS  PubMed  Google Scholar 

  28. Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M, et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1997 Mar;41(3):540–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Juréen P, Werngren J, Toro J-C, Hoffner S. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2008 May;52(5):1852–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Takayama K, Armstrong EL, Kunugi KA, Kilburn JO. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1979 Aug;16(2):240–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med. 1997 May;3(5):567–70.

    Article  CAS  PubMed  Google Scholar 

  32. Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987 Jun 4;327(6121):389–94.

    Article  CAS  PubMed  Google Scholar 

  33. Finken M, Kirschner P, Meier A, Wrede A, Böttger EC. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993 Sep;9(6):1239–46.

    Article  CAS  PubMed  Google Scholar 

  34. Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother. 2011 Jul 1;66(7):1417–30.

    Article  CAS  PubMed  Google Scholar 

  35. Bartlett JG, Dowell SF, Mandell LA, File TM, Musher DM, Fine MJ. Practice guidelines for the management of community-acquired pneumonia in adults. Infectious Diseases Society of America. Clin Infect Dis. 2000 Aug;31(2):347–82.

    Article  CAS  PubMed  Google Scholar 

  36. Wang J-Y, Hsueh P-R, Jan I-S, Lee L-N, Liaw Y-S, Yang P-C, et al. Empirical treatment with a fluoroquinolone delays the treatment for tuberculosis and is associated with a poor prognosis in endemic areas. Thorax. 2006 Oct;61(10):903–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis. 2003 Jul;3(7):432–42.

    Article  CAS  PubMed  Google Scholar 

  38. Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol. 2010 Mar;17(3):289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alangaden GJ, Kreiswirth BN, Aouad A, Khetarpal M, Igno FR, Moghazeh SL, et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1998 May;42(5):1295–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Via LE, Cho S-N, Hwang S, Bang H, Park SK, Kang HS, et al. Polymorphisms associated with resistance and cross-resistance to aminoglycosides and capreomycin in mycobacterium tuberculosis Isolates from South Korean patients with drug-resistant tuberculosis. J Clin Microbiol. 2010 Feb;48(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  41. Migliori GB, Lange C, Centis R, Sotgiu G, Mütterlein R, Hoffmann H, et al. Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. Eur Respir J. 2008 Jun 1;31(6):1155–9.

    Article  CAS  PubMed  Google Scholar 

  42. WHO | Guidelines for the programmatic management of drug-resistant tuberculosis [Internet]. WHO. World Health Organization; [cited 2021 Jan 30]. Available from: https://www.who.int/tb/publications/tb-drugresistant-guidelines/en/

  43. WHO | Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis [Internet]. WHO. World Health Organization; [cited 2021 Jan 30]. Available from: http://www.who.int/tb/publications/pmdt_companionhandbook/en/

  44. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–30.

    Article  CAS  PubMed  Google Scholar 

  45. Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol. 2007 Jun;3(6):323–4.

    Article  CAS  PubMed  Google Scholar 

  46. Provisional CDC Guidelines for the Use and Safety Monitoring of Bedaquiline Fumarate (Sirturo) for the Treatment of Multidrug-Resistant Tuberculosis [Internet]. [cited 2021 Jan 30]. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr6209a1.htm?s_cid=rr6209a1_e

  47. Veziris N, Bernard C, Guglielmetti L, Du DL, Marigot-Outtandy D, Jaspard M, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. European Respiratory Journal [Internet] 2017 Mar 1 [cited 2021 Jan 30];49(3). Available from: https://erj.ersjournals.com/content/49/3/1601719

  48. Xavier AS, Lakshmanan M. Delamanid: A new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother. 2014;5(3):222–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs. 2015 Jan;75(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  50. von Groote-Bidlingmaier F, Patientia R, Sanchez E, Balanag V, Ticona E, Segura P, et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. Lancet Respir Med. 2019 Mar 1;7(3):249–59.

    Article  Google Scholar 

  51. WHO | WHO position statement on the use of delamanid for multidrug-resistant tuberculosis [Internet]. WHO. World Health Organization; [cited 2021 Jan 30]. Available from: http://www.who.int/tb/publications/2018/Position_Paper_Delamanid/en/

  52. American Thoracic Society. Diagnostic standards and classification of tuberculosis. Am Rev Respir Dis. 1990 Sep;142(3):725–35.

    Article  Google Scholar 

  53. Nell AS, D’lom E, Bouic P, Sabaté M, Bosser R, Picas J, et al. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One. 2014 Feb 26;9(2):e89612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ji Y, Wang X, Donnelly RJ, Uskokovic MR, Studzinski GP. Signaling of monocytic differentiation by a non-hypercalcemic analog of vitamin D3, 1,25(OH)2-5,6 trans-16-ene-vitamin D3, involves nuclear vitamin D receptor (nVDR) and non-nVDR-mediated pathways. J Cell Physiol. 2002 May;191(2):198–207.

    Article  CAS  PubMed  Google Scholar 

  55. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006 Mar 24;311(5768):1770–3.

    Article  CAS  PubMed  Google Scholar 

  56. Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW, Skolimowska K, et al. IFN-γ- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol. 2007 Jun 1;178(11):7190–8.

    Article  CAS  PubMed  Google Scholar 

  57. Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001 Jun 15;97(12):3951–9.

    Article  PubMed  Google Scholar 

  58. Yuk J-M, Shin D-M, Lee H-M, Yang C-S, Jin HS, Kim K-K, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009 Sep 17;6(3):231–43.

    Article  CAS  PubMed  Google Scholar 

  59. Yang C-S, Shin D-M, Kim K-H, Lee Z-W, Lee C-H, Park SG, et al. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol. 2009 Mar 15;182(6):3696–705.

    Article  CAS  PubMed  Google Scholar 

  60. Agarwal S, Reddy GV, Reddanna P. Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev Clin Immunol. 2009 Mar;5(2):145–65.

    Article  CAS  PubMed  Google Scholar 

  61. Tobin DM, Ramakrishnan L. TB: the Yin and Yang of lipid mediators. Curr Opin Pharmacol. 2013 Aug;13(4):641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona P-J. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis. 2013 Jul 15;208(2):199–202.

    Article  CAS  PubMed  Google Scholar 

  63. Berger W, De Chandt MTM, Cairns CB. Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int J Clin Pract. 2007 Apr;61(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  64. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014 Jul 3;511(7507):99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chatterjee S, Nutman TB. Helminth-induced immune regulation: implications for immune responses to tuberculosis. PLoS Pathog. 2015 Jan 29;11(1):e1004582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Abate E, Belayneh M, Idh J, Diro E, Elias D, Britton S, et al. Asymptomatic helminth infection in active tuberculosis is associated with increased regulatory and Th-2 responses and a lower sputum smear positivity. PLoS Negl Trop Dis [Internet]. 2015; Aug 6 [cited 2021 Jan 20];9(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527760/

  67. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004 Feb;75(2):163–89.

    Article  CAS  PubMed  Google Scholar 

  68. Condos R, Raju B, Canova A, Zhao B-Y, Weiden M, Rom WN, et al. Recombinant gamma interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect Immun. 2003 Apr 1;71(4):2058–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giosué S, Casarini M, Alemanno L, Galluccio G, Mattia P, Pedicelli G, et al. Effects of aerosolized interferon-alpha in patients with pulmonary tuberculosis. Am J Respir Crit Care Med. 1998 Oct;158(4):1156–62.

    Article  PubMed  Google Scholar 

  70. Palmero D, Eiguchi K, Rendo P, Castro Zorrilla L, Abbate E, González Montaner LJ. Phase II trial of recombinant interferon-alpha2b in patients with advanced intractable multidrug-resistant pulmonary tuberculosis: long-term follow-up. Int J Tuberc Lung Dis. 1999 Mar;3(3):214–8.

    CAS  PubMed  Google Scholar 

  71. Pedral-Sampaio DB, Netto EM, Brites C, Bandeira AC, Guerra C, Barberin MG, et al. Use of Rhu-GM-CSF in pulmonary tuberculosis patients: results of a randomized clinical trial. Braz J Infect Dis. 2003 Aug;7(4):245–52.

    Article  CAS  PubMed  Google Scholar 

  72. Jurado JO, Alvarez IB, Pasquinelli V, Martínez GJ, Quiroga MF, Abbate E, et al. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis. J Immunol. 2008 Jul 1;181(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  73. Hassan SS, Akram M, King EC, Dockrell HM, Cliff JM. PD-1, PD-L1 and PD-L2 Gene expression on T-cells and natural killer cells declines in conjunction with a reduction in PD-1 protein during the intensive phase of tuberculosis treatment. PLoS One. 2015;10(9):e0137646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Singh A, Mohan A, Dey AB, Mitra DK. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis. 2013 Aug 15;208(4):603–15.

    Article  CAS  PubMed  Google Scholar 

  75. Merlo A, Saverino D, Tenca C, Grossi CE, Bruno S, Ciccone E. CD85/LIR-1/ILT2 and CD152 (cytotoxic T lymphocyte antigen 4) inhibitory molecules down-regulate the cytolytic activity of human CD4+ T-cell clones specific for Mycobacterium tuberculosis. Infect Immun. 2001 Oct;69(10):6022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. García Jacobo RE, Serrano CJ, Enciso Moreno JA, Gaspar Ramírez O, Trujillo Ochoa JL, Uresti Rivera EE, et al. Analysis of Th1, Th17 and regulatory T cells in tuberculosis case contacts. Cell Immunol. 2014 Jun;289(1–2):167–73.

    Article  PubMed  CAS  Google Scholar 

  77. Sada-Ovalle I, Chávez-Galán L, Torre-Bouscoulet L, Nava-Gamiño L, Barrera L, Jayaraman P, et al. The Tim3-galectin 9 pathway induces antibacterial activity in human macrophages infected with Mycobacterium tuberculosis. J Immunol. 2012 Dec 15;189(12):5896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sada-Ovalle I, Ocaña-Guzman R, Pérez-Patrigeón S, Chávez-Galán L, Sierra-Madero J, Torre-Bouscoulet L, et al. Tim-3 blocking rescue macrophage and T cell function against Mycobacterium tuberculosis infection in HIV+ patients. J Int AIDS Soc [Internet]. 2015; Oct 19 [cited 2021 Jan 18];18(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612469/

  79. Arora A, Nadkarni B, Dev G, Chattopadhya D, Jain AK, Tuli SM, et al. The use of immunomodulators as an adjunct to antituberculous chemotherapy in non-responsive patients with osteo-articular tuberculosis. J Bone Joint Surg. 2006 Feb 1;88-B(2):264–9.

    Article  Google Scholar 

  80. Chang KC, Leung CC, Yew WW, Ho SC, Tam CM. A nested case-control study on treatment-related risk factors for early relapse of tuberculosis. Am J Respir Crit Care Med. 2004 Nov 15;170(10):1124–30.

    Article  PubMed  Google Scholar 

  81. Chang KC, Leung CC, Grosset J, Yew WW. Treatment of tuberculosis and optimal dosing schedules. Thorax. 2011 Nov 1;66(11):997–1007.

    Article  PubMed  Google Scholar 

  82. Chaudhuri. Recent changes in technical and operational guidelines for tuberculosis control programme in India–2016: A paradigm shift in tuberculosis control [Internet]. [cited 2021 Mar 15]. Available from: https://www.jacpjournal.org/article.asp?issn=2320-8775;year=2017;volume=5;issue=1;spage=1;epage=9;aulast=Chaudhuri

  83. India WHOCO for. Index-TB guidelines: guidelines on extra-pulmonary tuberculosis in India. 2016 [cited 2021 Jan 29.]; Available from: https://apps.who.int/iris/handle/10665/278953

  84. Organization WH. Rapid advice : treatment of tuberculosis in children [Internet]. World Health. Organization. 2010; [cited 2021 Jan 29]. Available from: https://apps.who.int/iris/handle/10665/44444

  85. WHO | Guidelines for treatment of drug-susceptible tuberculosis and patient care (2017 update) [Internet]. WHO. World Health Organization; [cited 2021 Jan 29]. Available from: http://www.who.int/tb/publications/2017/dstb_guidance_2017/en/

  86. Azhar GS. DOTS for TB relapse in India: A systematic review. Lung India. 2012 Apr 1;29(2):147.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nene AM, Patil S, Kathare AP, Nagad P, Nene A, Kapadia F. Six versus 12 months of anti tubercular therapy in patients with biopsy proven spinal tuberculosis: a single center, open labeled, prospective randomized clinical trial-A Pilot study. Spine (Phila Pa 1976). 2019 Jan 1;44(1):E1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sri Vijay Anand, K.S., Kanna, R.M. (2022). The Medical Management of Spinal Tuberculosis. In: Dhatt, S.S., Kumar, V. (eds) Tuberculosis of the Spine. Springer, Singapore. https://doi.org/10.1007/978-981-16-9495-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9495-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9494-3

  • Online ISBN: 978-981-16-9495-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics