Skip to main content

Role of Insect Pest Management in Agriculture Conservation

  • Chapter
  • First Online:
Agrochemicals in Soil and Environment
  • 665 Accesses

Abstract

The Earth consists of life forms as pests that are classified into different species which are million in numbers. However, for foodstuffs, safe house, and the area just only 1% competes with human beings. Different practices of farming had been applied in managing pests or insects, but none of the practices have gained a fruitful result or control on pests till date. Controlling through chemical method is yet the dominating pest control measure; however, it causes environmental contamination and has side effects on human health also. The drawn-out manageability of agrarian society and common ecosystems relies on the protection of regular assets. Conservation agriculture uses innovative approaches and advances in technology to provide significant benefits along with enhanced levels of creation while at the same time saving the environment. It additionally enriches the biodiversity and ecosystem of vegetation, fauna and flora that assist with controlling insect pests; conflicting data induce worries in regard to diminished yields, expanded work prerequisites to reduce use of herbicides and insect pests issues. It is important to elaborate the natural, cultural, biological, mechanical, biotechnological and chemical control methods in managing the insect pests. The basic principle of integrated pest management is to develop a stable environment in between viable environmental practices and commercial farming. Using conservation agriculture technique for insect pest management will boost biodiversity and conserve native resources. It is based on similar fundamentals to the techniques that help increase biodiversity. In addition, the latest advancements in insect pest management like biotechnological approaches are also being used in the conservation management of insects. In management systems, sustainable pest management for crop production is possible by combining the latest technologies with IPM. In this chapter, we consider the advantages, disadvantages, and effects of conservation agriculture on pest management. The purpose of this chapter is to present the pros, cons, and impacts of conservation agriculture on managing pests, a discussion on plants and insect biodiversities, as well as different pest control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon RJ, Moar W, Moore AD, Higgins TJ (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci 178(3):333–339

    Article  CAS  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A et al (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3(4):247–255

    Article  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35:550–557

    Article  Google Scholar 

  • Artim L (2003) Application for determination of non-regulated status for lepidopteran insect protected VIP3A cotton transformation event COT102. http://cera-gmc.org/docs/decdocs/05-209-018.pdf

  • Bakhsh A, Siddiq S, Husnain T (2012) A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica 183:65–74

    Article  CAS  Google Scholar 

  • Bashir K, Husnain T, Fatima T, Latif Z, Mehdi SA, Riazuddin S (2004) Field evaluation and risk assessment of transgenic Indica basmati rice. Mol Breed 13:301–312

    Article  CAS  Google Scholar 

  • Bashir K, Husnain T, Fatima T, Riaz N, Riazzudin S (2005) Novel indica basmati line (B-370) expressing two unrelated Bacillus thuringiensis genes is highly resistant to two lepidopterans in the field. Crop Prot 24:870–879

    Article  CAS  Google Scholar 

  • Buschman L, Sloderbeck P, Guo Y, Higgins R, Witt M (1998) Corn borer resistance and grain yield of Bt and non-Bt corn hybrids at garden city, Kansas, in 1997. In: Progress report – 814. Agricultural Experiment Station and Co-operative Extension Service, Kansas State University, Manhattan, KS, pp 34–38

    Google Scholar 

  • Castner JL (2010) General entomology and insect biology. CRC Press, Boca Raton, FL, pp 17–38

    Google Scholar 

  • Cook RJ (2006) Toward cropping systems that enhance productivity and sustainability. Proc Natl Acad Sci 103(49):18389–18394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang W, Wei ZM (2007) Efficient agrobacterium-mediated transformation of soybean. J Mol Cell Biol 3:85–96

    Google Scholar 

  • Datta K, Vasquez A, Tu J, Torrizo L, Alam MF, Oliva N et al (1998) Constitutive and tissue-specific differential expression of the cryIA (b) gene in transgenic rice plants conferring resistance to rice insect pest. Theor Appl Genet 97(1–2):20–30

    Article  CAS  Google Scholar 

  • Delannay X, LaVallee BJ, Proksch RK, Fuchs RL, Sims SR, Greenplate JT et al (1989) Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Biotechnology 7(12):1265–1269

    Google Scholar 

  • Derpsch R, Friedrich T (2009) Global overview of conservation agriculture no-till adoption. In: 4th World Congress on conservation agriculture, New Delhi, India

    Google Scholar 

  • Douches DS, Pett W, Santos F, Coombs J, Grafius E, Li W et al (2004) Field and storage testing Bt potatoes for resistance to potato tuberworm (Lepidoptera: Gelichiidae). J Econ Entomol 97(4):1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Duck NB, Evola SV (1997) Use of transgenics to increase host plant resistance to insects: opportunities and challenges. In: Carozzi NB, Koziel MG (eds) Advances in insect control: the role of transgenic plant. Taylor and Francis Ltd., London, pp 1–20

    Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  CAS  PubMed  Google Scholar 

  • Ebora RV, Ebora MM, Sticklen MB (1994) Transgenic potato expressing the Bacillus thuringiensis CryIA (c) gene effects on the survival and food consumption of Phthorimeaoperculella (Lepidoptera: Gelechiidae) and Ostrinianubilalis (Lepidoptera: Noctuidae). J Econ Entomol 87(4):1122–1127

    Article  Google Scholar 

  • El Titi A (2003) Effects of tillage on invertebrates in soil ecosystems. In: Soil tillage in agroecosystems. Routledge, London, pp 261–296

    Google Scholar 

  • FAO (2006) Conservation agriculture. Agriculture and Consumer Protection Department, Rome. http://www.fao.org/ag/magazine/0110sp.htm

    Google Scholar 

  • FAO (2012) Agriculture growth programm (AGP)—integrated pest management. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/ipm/en/

  • Foottit RG, Adler PH (eds) (2009) Insect biodiversity. Wiley-Blackwell, London, pp 265–283

    Book  Google Scholar 

  • Gold MV (1999) Sustainable agriculture: definitions and terms. Special reference briefs series No. SRB 99-02. National Agricultural Library, http://WARP.NAL.USDA.GOV/AFSIC/AFSIC_PUBS/SRB9902.HTM [GEO - 2-181]

  • Grimaldi D, Engel MS, Engel MS, Engel MS (2005) Evolution of the Insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart CN Jr (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization and introgression with Brassica rapa. Theor Appl Genet 103:362–368

    Article  Google Scholar 

  • Harford N, Le Breton J (2009) Farming for the future: a guide to conservation agriculture in Zimbabwe Zimbabwe Conservation Agriculture Task Force. https://vtechworks.lib.vt.edu/handle/10919/69049. Accessed March 2009

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance–a critical review. Crop Prot 18(3):177–191

    Article  Google Scholar 

  • Iannacone R, Grieco PD, Cellini F (1997) Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol 34(3):485–496

    Article  CAS  PubMed  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26(6):755–763

    Article  CAS  PubMed  Google Scholar 

  • Jaipal S, Singh S, Yadav A, Malik RK, Hobbs PR (2002) Species diversity and population density of macro-fauna of rice-wheat cropping habitat in semi-arid subtropical northwest India in relation to modified tillage practices of wheat sowing. In: Herbicide-resistance management and zero-tillage in the rice–wheat cropping system. Proc. Int. Workshop, Hissar, India, pp 4–6

    Google Scholar 

  • Jayasooriya HJC, Aheeyar MM (2016) Adoption and factors affecting on adoption of integrated pest management among vegetable farmers in Sri Lanka. Proc Food Sci 6:208–212

    Article  Google Scholar 

  • Jenkins JN Jr, McCarty JC, Buehler RE, Kiser J, Williams C, Wofford T (1997) Resistance of cotton with delta-endotoxin genes from Bacillus thuringiensis var. kurstaki on selected Lepidopteran insects. Agron J 89:768–780

    Article  Google Scholar 

  • Jhon R, Maria Z (2001) Agricultural biotechnology for developing countries results of an electronic forum. FAO, Rome

    Google Scholar 

  • Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cryIA (c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6(2):177–185

    Article  CAS  Google Scholar 

  • Kendall DA, Chinn NE, Glen DM, Wiltshire CW, Winstone L, Tidboald C (1995) Effects of soil management on cereal pests and their natural enemies. In: Ecology and integrated farming systems. John Wiley & Sons, Chichester, pp 83–102

    Google Scholar 

  • Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011) Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against lepidopteran pest (Helicoverpa armigera). Span J Agric Res 9:296–300

    Article  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L et al (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11(2):194–200

    CAS  Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR et al (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4(1):33–37

    Article  CAS  Google Scholar 

  • Loc NT, Tinjuangjun P, Gatehouse AMR, Christou P, Gatehouse JA (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9:231–244

    Article  CAS  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AM, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7(1):85–93

    Article  CAS  Google Scholar 

  • Mason J (2003) Sustainable agriculture. Landlinks Press, Collingwood, VIC

    Book  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182(1):87–102

    Article  CAS  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean. PLoS Biol 9(8):e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA et al (1997) Transgenic elite indica rice plants expressing CryIAc∂-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci 94(6):2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olembo R, Hawksworth D (1991) Importance of microorganisms and invertebrates as components of biodiversity. Biodiversity of microorganisms and invertebrates: its role in sustainable agriculture. In: Proceedings of the first workshop on the ecological foundations of sustainable agriculture (WEFSA 1). CAB International, London

    Google Scholar 

  • Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart CN Jr (1994) Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell Dev B 30:144–149

    Article  Google Scholar 

  • Pedigo LP, Rice ME (2014) Entomology and pest management. Waveland Press, Long Grove, IL

    Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Bio/technology 8(10):939–943

    CAS  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA et al (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22(2):313–321

    Article  CAS  PubMed  Google Scholar 

  • Pushpa R, Raveenderan TS, Rajeswari S, Amalabalu P, Punitha D (2013) Genetic transformation of cry1EC gene into cotton (Gossypium hirsutum L.) for resistance against Spodopteralitura. Afr J Biotechnol 12:1820–1827

    Article  CAS  Google Scholar 

  • Qin D, Liu XY, Miceli C, Zhang Q, Wang PW (2019) Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela. BMC Biotechnol 19(1):1–12

    Article  Google Scholar 

  • Raina SK, Talwar D, Nayak NR, Khanna HK, Grover M (2002) Field evaluation and generation of two-gene Bttransgenics of indica rice. In: Abstract Intl. Rice Cong., Beijing, p 287

    Google Scholar 

  • Ramachandran S, Buntin GD, All JN, Tabashnik BE, Raymer PL, Adang MJ, Pulliam DA, Stewart CN Jr (1998) Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J Econ Entomol 91:1239–1244

    Article  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpaarmigera. Plant Sci 168(4):1135–1146

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore NV, Van Rie J, Lereclus D, Baum J, Feitelson J et al (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163(3):381–395

    Article  CAS  Google Scholar 

  • Shelton AM, Tang JD, Roush RT, Metz TD, Earle ED (2000) Field tests on managing resistance to Bt-engineered plants. Nat Biotechnol 18(3):339–342

    Article  CAS  PubMed  Google Scholar 

  • Shu Q, Ye G, Cui H, Cheng X, Xiang Y, Wu D, Gao M, Xia Y, Hu C, Sardana R, Altosaar I (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breed 6:433–439

    Article  CAS  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA (1996) Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112(1):121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift M, Anderson J (1989) Decomposition. In: Lieth HS, Weger MJA (eds) Ecossystem of the world 14B. Tropical rain forest ecossystem. Elsevier, Amsterdam

    Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW, Moar WJ (1993) Resistance to toxins from Bacillus thuringiensis subsp. kurstaki causes minimal cross-resistance to B. thuringiensis subsp. aizawai in the diamondback moth (Lepidoptera: Plutellidae). Appl Environ Microbiol 59(5):1332–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Chen H, Xu CG, Li XH, Lin YJ, Zhang QF (2006) Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed 18:1–10

    Article  CAS  Google Scholar 

  • Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S, Golabchian R (2008) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran J Biotechnol 6:164–173

    CAS  Google Scholar 

  • Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Organ Cult 113(2):227–235

    Article  CAS  Google Scholar 

  • Wilson DF, Flint HM, Deaton RW, Fischhoff DA, Perlak FJ, Armstrong TA, Stapp BR (1992) Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J Econ Entomol 85(4):1516–1521

    Article  Google Scholar 

  • Ye GY, Shu QY, Yao HW, Cui HR, Cheng XY, Hu C, Altosaar I (2001) Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. J Econ Entomol 94(1):271–276

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhuo Q, Tian Y, Piao J, Yang X (2013a) Long-term toxicity study on transgenic rice with Cry1Ac and sck genes. Food Chem Toxicol 63:76–83

    Article  PubMed  Google Scholar 

  • Zhang OJ, Li C, Liu SK, Lai D, Qi QM, Lu CG (2013b) Breeding and identification of insect resistant rice by transferring two insecticidal genes, sbk and sck. Rice Sci 20:19–24

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Director, Dayalbagh Educational Institute, and Head of Botany Department, Dayalbagh, Agra, for providing support and infrastructure.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waswani, H., Gupta, A., Prasad, M., Ranjan, R. (2022). Role of Insect Pest Management in Agriculture Conservation. In: Naeem, M., Bremont, J.F.J., Ansari, A.A., Gill, S.S. (eds) Agrochemicals in Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-9310-6_11

Download citation

Publish with us

Policies and ethics