Skip to main content

Lathyrus Breeding

  • Chapter
  • First Online:
Fundamentals of Field Crop Breeding

Abstract

Grass pea (Lathyrus sativus L.) is a climate-resilient nutrient-dense crop that offers food and nutritional security to many low-income communities of different underdeveloped regions of the world including South Asia, Sub-Saharan Africa and Mediterranean region. It is recognized to have a good source of protein, healthy fatty acids, vitamins and micronutrients, notwithstanding, the stigma of neurotoxin (ODAP) associated with grass pea that cause irremediable neurological disorder in humans and animals. Interestingly, it is the only known dietary source of l-homoarginine a non-proteinogenic amino acid which has admirable medicinal properties. It has better tolerance to different biotic and abiotic stresses as compared to other pulse crops. Over the years, sincere efforts are made towards the genetic improvement of grass pea to subsidize ODAP content and elevate production potential. In this book chapter, the economic importance of the crop, its origin, domestication, evolution, botanical description and floral biology have been illustrated. The accomplishment made in grass pea improvement through conventional and non-conventional breeding approaches, that is selection, hybridization, pre-breeding and distant hybridization along with application of mutation breeding have been reviewed. The current status of genomics resources and marker-assisted breeding has also been deliberated. Moreover, the breeding objectives, major constraints and future thrust areas toward exploring cutting-edge tools and technique for enriching grass pea genomic resources have been outlined. Furthermore, the existing coordinated testing system for new entries and quality seed production has also been reviewed in brief. Overall, to accelerate genetic gain in grass pea along with low ODAP embracement, urgent need is being felt to explore recent advanced tools and techniques such as transcriptomics, proteomics, metabolomics, small RNAomics, epigenomics, interactomics, bioinformatics and genome editing to strengthen the grass pea breeding programme towards its transformation from orphan to main stream crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El Moneim AM, Cocks PS (1993) Adaptation and yield stability of selected lines of Lathyrus spp. under rainfed conditions in west Asia. Euphytica 66:89–97

    Google Scholar 

  • Abd El Moneim AM, Van Dorrestein B, Baum M et al (2001) Role of ICARDA in improving the nutritional quality and yield potential of grass pea (Lathyrus sativus L.), for subsistence farmers in dry areas. Lath Lath Newsletter 2:55–58

    Google Scholar 

  • Abdallah F, Kumar S, Amri A et al (2021) Wild Lathyrus species as a great source of resistance for introgression into cultivated grass pea (Lathyrus sativus L.) against broomrape weeds (Orobanche crenata Forsk. and Orobanche foetida Poir.). Crop Sci 61:263–276

    Google Scholar 

  • Abd-El-Moneim AM, Van-Dorrestein B, Baum M et al (2000) Improving the nutritional quality and yield potential of grasspea (Lathyrus sativus L.). Food Nutr Bull 21:493–496

    Google Scholar 

  • Aci MM, Lupini A, Badagliacca G et al (2020) Genetic diversity among Lathyrus ssp. based on agronomic traits and molecular markers. Agronomy 10(8):1182

    Google Scholar 

  • Addis G, Narayan RKJ (2000) Interspecific hybridisation of Lathyrus sativus (guaya) with wild Lathyrus species and embryo rescue. Afr Crop Sci J 8:129–136

    Google Scholar 

  • Ahsan S, Jahan R, Ahmad I et al (2010) A survey of medicinal plants used by Kavirajes of Barisal town in Barisal district, Bangladesh. Am Eurasian J Sustain Agric 4(2):237–246

    Google Scholar 

  • Aletor VA, Abd-El-Moneim AM, Goodchild AV (1994) Evaluation of the seeds of selected lines of three Lathyrus spp. for β-N-oxalyl amino-l-alanine (BOAA), tannins, trypsin inhibitor activity and certain in vitro characteristics. J Sci Food Agric 65:143–151

    CAS  Google Scholar 

  • Ali M, Kumar S (2009) Major technological advances in pulses: Indian scenario. In: Ali M, Kumar S (eds) Milestones in food legumes research. Indian Institute of Pulses Research, Kanpur, pp 1–20

    Google Scholar 

  • Ali HB, Osman SA (2020) Ribosomal DNA localization on Lathyrus species chromosomes by FISH. J Genet Eng Biotechnol 18(1):1–9

    Google Scholar 

  • Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032

    CAS  PubMed  Google Scholar 

  • Allkin R, Macfarlane TD, Witte RJ et al (1985) The geographical distribution of Lathyrus. Vicieae Database Project 7:1–75

    Google Scholar 

  • Allkin R, Goyder DJ, Bisby FA et al (1986) Names and synonyms of species and subspecies in the Vicieae. In: Vicieae Database Project 7, pp 1–75

    Google Scholar 

  • Almeida NF, Leitão ST, Caminero C et al (2014a) Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Mol Biol Rep 41:269–283. https://doi.org/10.1007/s11033-013-2860-4

    Article  CAS  PubMed  Google Scholar 

  • Almeida NF, Leitão ST, Krezdorn N et al (2014b) Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a lasting resource for smart breeding. BMC Plant Biol 14(1):376

    PubMed  PubMed Central  Google Scholar 

  • Almeida NF, Krezdorn N, Rotter B et al (2015a) Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis. Front Plant Sci 6:178

    PubMed  PubMed Central  Google Scholar 

  • Almeida NF, Rubiales D, Patto MCV (2015b) Grass pea. In: De Ron AM (ed) Grain legumes. Handbook of plant breeding, vol 10. Springer, New York, pp 251–265

    Google Scholar 

  • Almeida NF, Rubiales D, Patto MCV (2015c) Grass pea. In: Grain legumes. Springer, New York, pp 251–265

    Google Scholar 

  • Al-Snafi AE (2019) Chemical constituents and pharmacological effects of Lathyrus sativus—a review. IOSR J Pharm 9(6):51–58

    Google Scholar 

  • Anonymous (2020) Project coordinator report, all India coordinated research project on MULLaRP (Mungbean, Urdbean, Lentil, Lathyrus, Rajmash & Pea). ICAR-Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Arslan M (2017) Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legum Res 40(5):803–810

    Google Scholar 

  • Arslan M, Basak M, Aksu E et al (2020) Genotyping of low β-ODAP grass pea (Lathyrus sativus L) germplasm with EST-SSR markers. Braz Arch Biol Technol 63

    Google Scholar 

  • Asmussen CB, Liston A (1998) Chloroplast DNA characters, phylogeny, and classification of Lathyrus (Fabaceae). Am J Bot 85:387–401

    CAS  PubMed  Google Scholar 

  • Asthana AN, Dixit GP (1998) Utilization of genetic resources in Lathyrus. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network. Pro IPGRI-ICARDAICAR regional working group meeting, 8–10 December 1997, New Delhi, India, pp 64–70

    Google Scholar 

  • Badr SF (2006) Karyotype analysis and chromosome evolution in species of Lathyrus (Fabaceae). Cytologia 71:447–455

    Google Scholar 

  • Badr A, ElShazly H, ElRabey H et al (2002) Systematic relationships in Lathyrus sect. Lathyrus (Fabaceae) based on amplified fragment length polymorphism (AFLP) data. Can J Bot 80:962–969

    CAS  Google Scholar 

  • Baghel SS, Sastri ARS, Geda AK (1995) Lathyrus cultivation in Chhattisgarh region of Central India. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia. International Plant Genetic Resources Institute, Rome, pp 139–142

    Google Scholar 

  • Banerjee J, Gantait S, Maiti MK (2017) Physiological role of rice germin-like protein 1 (OsGLP1) at early stages of growth and development in indica rice cultivar under salt stress condition. Plant Cell Tissue Organ Cult 131:127–137. https://doi.org/10.1007/s11240-017-1270-z

    Article  CAS  Google Scholar 

  • Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6(1):106–136

    PubMed  PubMed Central  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grass pea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24(9):523–531

    CAS  PubMed  Google Scholar 

  • Barik DP, Acharya L, Mukherjee AK et al (2007) Analysis of genetic diversity among selected grass pea (Lathyrus sativus L.) genotypes using RAPD markers. Z Naturforsch C (German) 62:869–874

    CAS  Google Scholar 

  • Barilli E, Satovic Z, Sillero JC et al (2011) Phylogenetic analysis of Uromyces species infecting grain and forage legumes by sequence analysis of nuclear ribosomal internal transcribed spacer region. J Phytopathol 159(3):137–145. https://doi.org/10.1111/j.1439-0434.2010.01736.x

    Article  CAS  Google Scholar 

  • Barilli E, Moral A, Sillero JC et al (2012) Clarification on rust species potentially infecting pea (Pisum sativum L.) crop and host range of Uromyces pisi (Pers.) Wint. Crop Prot 37:65–70. https://doi.org/10.1016/j.cropro.2012.01.019

    Article  Google Scholar 

  • Barker BTP (1916) Sweet pea hybrids. Gard Chron Ser 360:156–157

    Google Scholar 

  • Barna KS, Mehta SL (1995) Genetic transformation and somatic embryogenesis in Lathyrus sativus. Indian J Plant Biochem Biotechnol 4:67–71

    Google Scholar 

  • Barpete S (2015) Genetic associations, variability and diversity in biochemical and morphological seed characters in Indian grass pea (Lathyrus sativus L.) accessions. Fresenius Environ Bull 24(2):492–497

    CAS  Google Scholar 

  • Barpete S, Sharma NC, Parmar D et al (2009) In vitro induction of multiple shoots and plant regeneration of Khesari Dal (Lathyrus sativus L.) using cotyledonary node explant. Indian Appl Pure Biol 24:81–86

    CAS  Google Scholar 

  • Barpete S, Dhingra M, Parmar D et al (2012a) Intraspecific genetic variation in eleven accessions of grass pea using seed protein profile. Sci Secure J Biotechnol 1:21–27

    Google Scholar 

  • Barpete S, Parmar D, Sharma NC et al (2012b) Karyotype analysis in grass pea (Lathyrus sativus L.). J Food Legum 25(1):14–17

    Google Scholar 

  • Barpete S, Khawar KM, Özcan S (2014a) Differential competence for in vitro adventitious rooting of grass pea (Lathyrus sativus L.). Plant Cell Tissue Organ Cult 119(1):39–50. https://doi.org/10.1007/s11240-014-0512-6

    Article  CAS  Google Scholar 

  • Barpete S, Sharma NC, Kumar S (2014b) Assessment of somaclonal variation and stability in vitro regenerated grass pea plants using SDS-PAGE. Legum Res 37:345–352

    Google Scholar 

  • Barpete S, Özcan SF, Khawar KM et al (2016) Effect of plant growth regulators and physical factors on in vitro high frequency regeneration of grass pea. J Anim Plant Sci 26(4):1087–1093

    CAS  Google Scholar 

  • Barpete S, Aasim M, Ozcan SF et al (2017) High frequency axillary shoots induction in grass pea (Lathyrus sativus L.). Bangladesh J Bot 46:119–124

    Google Scholar 

  • Barpete S, Gupta P, Khawar KM et al (2020a) In vitro approaches for shortening generation cycles and faster breeding of low β-n-oxalyl-l-α, β-diamino propionic acid content grass pea (Lathyrus sativus L.). Fresenius Environ Bull 29(04A):2698–2706

    CAS  Google Scholar 

  • Barpete S, Gupta P, Singh M et al (2020b) Culture selected somaclonal variants showing low-ODAP and high protein content in nineteen grass pea (Lathyrus sativus L.) genotypes. Plant Cell Tissue Organ Cult 142:625–634. https://doi.org/10.1007/s11240-020-01889-0

    Article  CAS  Google Scholar 

  • Barpete S, Gupta P, Khawar KM et al (2021a) Effect of cooking methods on protein content and neurotoxin (β-ODAP) concentration in grass pea (Lathyrus sativus L.) grains. CyTA J Food 19(1):448–456. https://doi.org/10.1080/19476337.2021.1915879

    Article  CAS  Google Scholar 

  • Barpete S, Aasim M, Khawar KM et al (2021b) Evaluation of toxicity levels of micronutrient strengths on regeneration of grass pea under in vitro conditions. J Plant Nutr 44(11):1548–1562. https://doi.org/10.1080/01904167.2020.1867738

    Article  CAS  Google Scholar 

  • Barrow MV, Simpson CF, Miller EJ (1974) Lathyrism: a review. Q Rev Biol 49:101–128

    CAS  PubMed  Google Scholar 

  • Bässler M (1966) Die Stellung des Subgenus Orobus (L.) Baker in der Gattung Lathyrus L. und seine systematische Gliederung. Feddes Repert 72:69–97

    Google Scholar 

  • Battistin A, Fernandez A (1994) Karyotype of four species of South America natives and one cultivated species of Lathyrus L. Caryologia 47:325–330

    Google Scholar 

  • Belaid Y, Chtourou-Ghorbel N, Marrakchi M et al (2006) Genetic diversity within and between populations of Lathyrus genus (Fabaceae) revealed by ISSR markers. Genet Resour Crop Evol 53(7):1413–1418

    CAS  Google Scholar 

  • Bell EA (1962) Associations of ninhydrin-reacting compounds in the seeds of 49 species of Lathyrus. Biochem J 83:225–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat KV, Mondal TK, Gaikwad AB et al (2020) Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L.). Plant Gene 21:100210

    CAS  Google Scholar 

  • Biswas AK (2007) Induced mutation in grass pea. In: Ochatt S, Jain SM (eds) Breeding of neglected and underutilized crops, spices and herbs. Science Publish, Jersey, Plymouth, pp 29–39

    Google Scholar 

  • Biswas SC, Biswas AK (1997) Induced translocation heterozygosity and sterility in Lathyrus sativus L. Bangladesh J Bot 26:131–136

    Google Scholar 

  • Briggs CJ, Campbell CG (1990) Segregation pattern for BOAA content in selected F2 progenies in Lathyrus sativus L. In: An international workshop on ecology and biochemistry of non-protein amino acids from plants. Laboratory of Physiological Chemistry, University of Ghent, Belgium, p 12

    Google Scholar 

  • Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. Collecting plant genetic diversity: technical guidelines, vol 75. CAB International, Wallingford, p 91

    Google Scholar 

  • Buchanan A (1904) Report on Lathyrism in the central provinces: 1896–1902. Central Provinces Administration Albert Press, Nagpur

    Google Scholar 

  • Burpee D (1916) The yellow sweet pea. Gard Chron Ser 3:148

    Google Scholar 

  • Caminero Saldaña C, Grajal Martín I (2009) From a survival food of the poor to a festivity main dish: “titos” (grass pea, Latyrus sativus) in La Gamonal and in papilla de Abajo (Burgos, Spain). Grain Legum 54:40–41

    Google Scholar 

  • Campbell CG (1988) Improvement of Latbyrus sativus L. In: Spencer PS (ed) The grasspea, threat and promise. Proc. Intern. Net Work Workshop for the improvement of Latbyrus sativus and Eradication of Lathyrism, London, 5–8 May, 1988. Third World Medical Research Foundation, New York, pp 139–145

    Google Scholar 

  • Campbell CG (1997) Grass pea (Lathyrus sativus L.), promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetic and Crop Plant Research. Gatersleben/International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Campbell CG, Briggs CJ (1987) Registration of low neurotoxin content Lathyrus germplasm LS 8246. Crop Sci 27:821

    Google Scholar 

  • Campbell CG, Mehra RB, Agrawal SK et al (1994) Current status and future research strategy in breeding grasspea (Lathyrus sativus). Euphytica 73:167–175

    Google Scholar 

  • Ceccarelli M, Sarri V, Polizzi E et al (2010) Characterization, evolution and chromosomal distribution of two satellite DNA sequence families in Lathyrus species. Cytogenet Genome Res 128:236–244

    CAS  PubMed  Google Scholar 

  • Chandna M, Matta NK (1994) Studies on changing protein levels in developing and germinating seeds of Lathyrus sativus L. J Plant Biochem Biotechnol 3:59–61

    CAS  Google Scholar 

  • Chandra A (2011) Use of EST database markers from M. truncatula in the transferability to other forage legumes. J Environ Biol 32(3):347

    CAS  PubMed  Google Scholar 

  • Chapman MA (2015) Transcriptome sequencing and marker development for four underutilized legumes. Appl Plant Sci 3(2):1400111

    Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A et al (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72(10):1293–1307

    CAS  PubMed  Google Scholar 

  • Chen YZ, Li ZX, Lu FH et al (1992) Studies on the screening of low toxic species of Lathyrus, analysis of toxins and toxicology. J Lanzhou Uni (Nat Sci) 28:93–98

    CAS  Google Scholar 

  • Chinnasamy G, Bal AK, McKenzie DB (2005) Fatty acid composition of grass pea (Lathyrus sativus L.) seeds. Lath Lath Newsletter 4:2–4

    Google Scholar 

  • Chowdhury MA, Slinkard AE (1997) Natural outcrossing in grasspea. J Hered 88:154–156

    Google Scholar 

  • Chowdhury MA, Slinkard AE (1999) Linkage of random amplified polymorphic DNA, isozyme and morphological markers in grasspea (Lathyrus sativus). Agric Sci 133(4):389–395

    CAS  Google Scholar 

  • Chtourou-Ghorbel N, Lauga B, Combes D et al (2001) Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lath Lath Newsletter 2:62–68

    Google Scholar 

  • Chtourou-Ghorbel N, Marrakchi M, Lauga B et al (2002a) Genetic diversity in selected Lathyrus species revealed by restriction fragment length polymorphism (RFLP) markers [Tunisia]. J Genet Breed 56:279–286

    CAS  Google Scholar 

  • Chtourou-Ghorbel N, Lauga B, Ben Brahim N et al (2002b) Genetic variation analysis in the genus Lathyrus using RAPD markers. Genet Resour Crop Evol 49(4):365–372

    Google Scholar 

  • Cobb JN (2013) Combining next-generation phenotyping and genome-wide association analysis to explore the genetic architecture of nutrient acquisition in domesticated Asian rice (Oryza sativa L.). Cornell University, Ithaca, NY

    Google Scholar 

  • Comai L, Young K, Till BJ et al (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    CAS  PubMed  Google Scholar 

  • Corti RN (1931) Osservazioni Cariologiche su aleune Lgumiuosae. Nuovo G Bot Ital 38:230

    Google Scholar 

  • Crino P, Polignano GB, Tavoletti S (2004) Grass pea—a potentially important crop in Mediterranean agriculture. Grain Legum 40:6–7

    Google Scholar 

  • Croft AM, Pang ECK, Taylor PWJ (1999) Molecular analysis of Lathyrus sativus L. (grasspea) and related Lathyrus species. Euphytica 107:167–176

    CAS  Google Scholar 

  • Dahiya BS (1986) Genetics and stability analysis in grass pea (Lathyrus sativus L.)—its implication in future breeding programmes. In: Kaul AK, Combes D (eds) Lathyrus and lathyrism. Third World Medical Research Foundation, New York, pp 161–168

    Google Scholar 

  • Dahiya BS, Jeswani LM (1974) Estimation of genetic variances: full-sib and half-sib analysis in grass pea. Indian J Agric Sci 44(12):829–832

    Google Scholar 

  • Davies AJS (1957) Successful crossing in the genus Lathyrus through stylar amputation. Nature 180:612

    Google Scholar 

  • Davies AJS (1958) A cytogenetic study in the genus Lathyrus. Unpublished PhD Thesis. University of Manchester

    Google Scholar 

  • Deshpande SS, Campbell CG (1992) Genotype variation in BOAA, condensed tannins, phenolics and enzyme inhibitors of grass pea (Lathyrus sativus). Can J Plant Sci 72(4):1037–1047

    CAS  Google Scholar 

  • Di Vito M, Greco N, Malhotra RS et al (2001) Reproduction of eight populations of Heterodera ciceri on selected plant species. Nematol Mediterr 29

    Google Scholar 

  • Ding S, Wang M, Fang S et al (2018) D-dencichine regulates thrombopoiesis by promoting megakaryocyte adhesion, migration and proplatelet formation. Front Pharmacol 9:297. https://doi.org/10.3389/fphar.2018.00297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit GP (1998a) Gene action for yield and its components in grasspea. Indian J Genet Plant Breed 58:91–95

    Google Scholar 

  • Dixit GP (1998b) Genetics of certain yield contributing traits in grasspea. Indian J Pulses Res 11:21–24

    Google Scholar 

  • Dixit GP, Pandey RL, Chandra S et al (1997) Stability of neurotoxin (ODAP) concentration in grass pea. In: Haimanot RT, Lambein F (eds) Lathyrus and lathyrism, a decade of progress. University of Ghent, Belgium, pp 103–104

    Google Scholar 

  • Dixit S, Khanna SK, Das M (2008) Non-uniform implementation of ban on Lathyrus cultivation in Indian states leading to unwarranted exposure to consumers. Curr Sci 94:570–572

    Google Scholar 

  • Dixit GP, Parihar AK, Bohra A et al (2016) Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J 4(5):407–416

    Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York

    Google Scholar 

  • Dutta PC, Saha CS, Lahiri BP et al (1982) Variation in the content of neurotoxin b-(N)-ovalyl-amino-L-alanine (BOAA) and protein in some local and exotic cultivars of grasspea (Lathyrus sativus). In: Proceedings of the national workshop on pulses, 18–19 August 1981. Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, pp 219–225

    Google Scholar 

  • Eichinger PCH, Rothnie NE, Delaere I et al (2000) New technologies for toxin analyses in food legumes. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic, Dordrecht, pp 685–692

    Google Scholar 

  • Ellison NW, Liston A, Steiner JJ et al (2006) Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Mol Phylogenet Evol 39:688–705

    CAS  PubMed  Google Scholar 

  • Emmrich P (2017) Unlocking the potential of grass pea (Lathyrus sativus) for food security. Agric Dev 31:67–70

    Google Scholar 

  • Emmrich PM, Sarkar A, Njaci I et al (2020) A draft genome of grass pea (Lathyrus sativus), a resilient diploid legume. bioRxiv

    Google Scholar 

  • FAO (2009) International treaty on plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Fernández-Aparicio M, Rubiales D (2010) Characterisation of resistance to crenate broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L. Euphytica 173:77–84

    Google Scholar 

  • Fernández-Aparicio M, Flores F, Rubiales D (2009) Field response of Lathyrus cicera germplasm to crenate broomrape (Orobanche crenata). Field Crops Res 113:187–358

    Google Scholar 

  • Fernández-Aparicio M, Flores F, Rubiales D (2012) Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Res 125:92–97

    Google Scholar 

  • Fikre A, Korbu L, Kuo YH et al (2008) The contents of the neuro excitatory amino acid beta ODAP (beta-N-oxalyl-L-alpha, beta-diaminopropionic acid), and other free and protein amino acids in the seeds of different genotypes of grass pea (Lathyrus sativus L.). Food Chem 110:422–427

    CAS  PubMed  Google Scholar 

  • Gautam PL, Singh IP, Karihaloo JL (1998) Need for a crop network on Lathyrus genetic resources for conservation and use. In: Mathur PN, Ramanatha Rao V, Arora RK (eds) Lathyrus genetic resources network. (Proceedings of the IPGRI-ICARDA-ICAR regional working group meeting, 8–10 December 1997, New Delhi, India). International Plant Genetic Resources Institute-Office for South Asia, New Delhi, pp 15–21

    Google Scholar 

  • GCDT (2009) Strategy for the ex situ conservation of Lathyrus, with special reference to Lathyrus sativus, L. cicera, and L. ochrus. Global Crop Diversity Trust (GCDT), Rome

    Google Scholar 

  • Gedil M, Ferguson M, Girma G et al (2015) Perspectives on the application of next-generation sequencing to the improvement of Africa’s staple food crops. In: Next generation sequencing—advances, applications and challenges, pp 287–321

    Google Scholar 

  • Gharti DB, Darai R, Subedi S et al (2014) Grain legumes in Nepal: present scenario and future prospects. World J Agric Res 2:216–222

    Google Scholar 

  • Gharyal PK, Maheshwari SC (1980) Plantlet formation from callus cultures of a legume, Lathyrus sativus cv. LSD-3. Z Pflanzenphysiol 100(4):359–362

    CAS  Google Scholar 

  • Ghasem K, Danesh-Gilevaei M, Aghaalikhani M (2011) Karyotypic and nuclear DNA variations in Lathyrus sativus (Fabaceae). Caryologia 64(1):42–54

    Google Scholar 

  • Ghorbel M, Marghali S, Trifi-Farah N et al (2014) Phylogeny of Mediterranean Lathyrus species using inter simple sequence repeats markers. Acta Bot Gall 161:91–98

    Google Scholar 

  • Girma D, Korbu L (2012) Genetic improvement of grass pea (Lathyrus sativus) in Ethiopia: an unfulfilled promise. Plant Breed 131(2):231–236

    Google Scholar 

  • Gowda CLL, Kaul AK (1982) Pulses in Bangladesh. Bangladesh Agricultural Research Institute (BARI), Dhaka, p 46

    Google Scholar 

  • Goyder DJ (1986) The genus Lathyrus. In: Kaul A, Combes D (eds) Lathyrus and lathyrism. Third World Medical Research Foundation, New York, pp 3–7

    Google Scholar 

  • Granati E, Bisignano V, Chiaretti D et al (2003) Characterization of Italian and exotic Lathyrus germplasm for quality traits. Genet Resour Crop Evol 50:273–280

    CAS  Google Scholar 

  • Grela ER, Günther KD (1995) Fatty acid composition and tocopherol content of some legume seeds. Anim Feed Sci Technol 52:325–331

    CAS  Google Scholar 

  • Grela ER, Rybiński W, Klebaniuk R, Matras J (2010) Morphological characteristics of some accessions of grass pea (Lathyrus sativus L.) grown in Europe and nutritional traits of their seeds. Genet Resour Crop Evol 57:693–701. https://doi.org/10.1007/s10722-009-9505-4

    Article  Google Scholar 

  • Grela E, Rybiński W, Matras J et al (2012) Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet Resour Crop Evol 59:1687–1703

    Google Scholar 

  • Grønlund M, Constantin G, Piednoir E et al (2008) Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res 135(2):345–349. https://doi.org/10.1016/j.virusres.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Udupa SM, Gupta DS et al (2018) Population structure analysis and determination of neurotoxin content in a set of grass pea (Lathyrus sativus L.) accessions of Bangladesh origin. Crop J 6(4):435–442

    Google Scholar 

  • Gupta DS, Barpete S, Kumar J et al (2021) Breeding for better grain quality in Lathyrus. In: Gupta DS, Gupta S, Kumar J (eds) Breeding for enhanced nutrition and bio-active compounds in food legumes. Springer, Cham, pp 131–156

    Google Scholar 

  • Gurung AM, Pang CK (2013) Lathyrus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: legume crops and forages. Springer Verlag, Heidelberg, pp 117–126

    Google Scholar 

  • Gurung AM, Pang ECK, Taylor PWJ (2002) Examination of Pisum and Lathyrus species as sources of ascochyta blight resistance for field pea (Pisum sativum). Australas Plant Pathol 31:41–45

    Google Scholar 

  • Gusmao M, Siddique K, Flower K et al (2012) Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. J Agron Crop Sci 198:430–441

    Google Scholar 

  • Gutierrez MV, Vaz Patto MC, Huguet T et al (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    CAS  PubMed  Google Scholar 

  • Hammer K, Laghetti G, Perrino P (1989) Collection of plant genetic resources in South Italy, 1988. Kulturpflanze 37:401–414

    Google Scholar 

  • Hammett KRW, Murray BG, Markham KR et al (1994) Interspecific hybridization between Lathyrus odoratus and L. belinensis. Int J Plant Sci 155:763–771

    Google Scholar 

  • Hammett KRW, Murray BG, Markham KR et al (1996) New interspecific hybrids in Lathyrus (Leguminosae): Lathyrus annuus × L. hierosolymitanus. Bot J Linn Soc 122:89–101

    Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL et al (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, MA, pp 43–63

    Google Scholar 

  • Hanada H, Hirai M (2003) Development of a genetic marker linked to the tendril trait of sweet pea (Lathyrus odoratus L.). Breed Sci 53(1):7–13

    CAS  Google Scholar 

  • Hanbury CD, Siddique KHM (2000) Registration of ‘Chalus’ Lathyrus cicera L. Crop Sci 40:1199

    Google Scholar 

  • Hanbury C, Hughes B (2003) Lathyrus cicera as quality feed for laying hens. Lath Lath Newslet 3:44–46

    Google Scholar 

  • Hanbury CD, Sarker A, Siddique KHM (1995) Evaluation of Lathyrus germplasm in a mediterranean type environment in South-Western Australia. In: Occasional paper no. 8. Co-operative Research Centre for Legumes in Mediterranean Agriculture

    Google Scholar 

  • Hanbury CD, Siddique KHM, Galwey NW et al (1999) Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterraneantype environments. Euphytica 110:45–60

    CAS  Google Scholar 

  • Hanbury CD, White CL, Mullan BP et al (2000) A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Sci Technol 87(1–2):1–27

    Google Scholar 

  • Hao X, Yang T, Liu R et al (2017) An RNA sequencing transcriptome analysis of grass pea (Lathyrus sativus L.) and development of SSR and KASP markers. Front. Plant Sci 8:1873. https://doi.org/10.3389/fpls.2017.01873

    Article  Google Scholar 

  • Herwig S (2001) The effect of genotype and environment [sic] on b-N-oxalyl-L-A-B-diaminopropionic acid (ODAP) concentration in Lathyrus sativus (L.) seeds. PhD thesis, The University of Western Australia, Perth, WA, Australia

    Google Scholar 

  • Heywood V, Casas A, Ford-Lloyd B et al (2007) Conservation and sustainable use of crop wild relatives. Agric Ecosyst Environ 121:245–255

    Google Scholar 

  • Hillocks R, Maruthi M (2012) Grass pea (Lathyrus sativus): is there a case for further crop improvement? Euphytica 186:647–654

    Google Scholar 

  • Hopf M (1986) Archaeological evidence of the spread and use of some members of the Leguminosae family. In: Barigozzi C (ed) The original and domestication of cultivated plants. Elsevier, Oxford, pp 35–60

    Google Scholar 

  • ICAR (2009) Project coordinator’s report of all India coordinated research project on mungbean, urdbean, lentil, Lathyrus, Rajmash and pea. Indian Council of Agricultural Research (ICAR), New Delhi, p 18

    Google Scholar 

  • ICARDA (2006) ICARDA annual report 2005. International Center for Agricultural Research in the Dry Areas, Aleppo, pp 54–55

    Google Scholar 

  • ICARDA (2007) ICARDA annual report 2006. International Center for Agricultural Research in the Dry Areas, Aleppo, pp 57–58

    Google Scholar 

  • IPGRI (2000) Descriptors for Lathyrus ssp. International Plant Genetic Resources Institute (IPGRI), Rome

    Google Scholar 

  • ISTA (2016) International rules for seed testing. International Seed Testing Association, Bassersdorf

    Google Scholar 

  • Jackson MT, Yunus AG (1984) Variation in the grass pea (Lathyrus sativus L.) and wild species. Euphytica 33(2):549–559

    Google Scholar 

  • Jain HK, Somayajulu PLN, Barat GK (1974) Final technical report of PL 480 scheme on “investigations on Lathyrus sativus L”. Division of Genetics, IARI, New Delhi

    Google Scholar 

  • Jammulamadaka N, Burgula S, Medisetty R et al (2011) β-N-oxalyl-l-α,β-diaminopropionic acid regulates mitogen-activated protein kinase signaling by down-regulation of phosphatidylethanolamine-binding protein 1. J Neurochem 118:176–186

    CAS  PubMed  Google Scholar 

  • Jeswani LM, Lal BM, Prakesh S (1970) Studies on the development of low neurotoxin (N-N-oxalyl amino alanine) lines in Lathyrus sativus (Khesari). Curr Sci 22:518

    Google Scholar 

  • Jiang J, Su M, Chen Y et al (2013) Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia 68(2):231–240

    CAS  Google Scholar 

  • Jiangbo W, Jingfen J (2002) Agrobacterium rhizogenes-mediated transformation of lathyrus maritimus and somatic embryogenesis of transformed tissues. Chin J Appl Environ Biol 8(2):190–194

    Google Scholar 

  • Jiao CJ, Jiang JL, Ke LM et al (2011) Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem Toxicol 49(3):543–549

    CAS  PubMed  Google Scholar 

  • Kasai A, Bai S, Li T et al (2011) Graft-transmitted siRNA signal from the root induces visual manifestation of endogenous post-transcriptional gene silencing in the scion. PLoS One 6(2):e16895. https://doi.org/10.1371/journal.pone.0016895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul AK, Islam Q (1981) Khesari cultivation in Bangladesh and Lathyrism. In: Kaul AK (ed) Proceedings of the National Workshop on Pulses, 18–19 August 1981, BARI, Joydebpur, pp 208–218

    Google Scholar 

  • Kaul AK, Islam MQ, Begum K (1982) Variability for various agronomic characters and neurotoxin content in some cultivars of khesari (Lathyrus sativus) in Bangladesh. Bangladesh J Bot 11:158–167

    Google Scholar 

  • Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480. https://doi.org/10.1124/mol.106.027029

    Article  CAS  PubMed  Google Scholar 

  • Kearney JP (1993) Wild Lathyrus species as genetic resources for improvement of grasspea (L Sativus). Unpublished Ph.D. Thesis. University of Southampton

    Google Scholar 

  • Kenicer G, Kajita T, Pennington R et al (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209

    CAS  PubMed  Google Scholar 

  • Kenicer G, Nieto-Blásquez EM, Mikić A et al (2009) Lathyrus—diversity and phylogeny in the genus. Grain Legum 54:16–18

    Google Scholar 

  • Khawaja HIT (1988) A new inter-specific Lathyrus hybrid to introduce the yellow flower color into sweat pea. Euphytica 37:69–75

    Google Scholar 

  • Khush GS (1973) Cytogenetics of aneuploids. Academic Press, New York

    Google Scholar 

  • Kislev ME (1989) Origins of the cultivation of Lathyrus sativus and L. cicera (Fabaceae). Econ Bot 43:262–270. https://doi.org/10.1007/bf02859868

    Article  Google Scholar 

  • Kiyoshi Y, Toshiyuki F, Blumenreich ID (1985) Isozymic variation and interspecific crossability in annual species of genus Lathyrus L. In: Kaul AK, Combes D (eds) Lathyrus and lathyrism, Pau, France, pp 118–129

    Google Scholar 

  • Klamt A, Schifino-Wittmann MT (2000) Karyotype morphology and evolution in some Lathyrus (Fabaceae) species of southern Brazil. Genet Mol Biol 23:463–467

    Google Scholar 

  • Kole C, Muthamilarasan M, Henry R et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563

    PubMed  PubMed Central  Google Scholar 

  • Krause D, Krause I (2003) New green manuring Lathyrus sativus variety AC Greenfix available in USA. Lath Lath Newsletter 3:13–14

    Google Scholar 

  • Kulwal P, Thudi M, Varshney RK (2011) Genomics interventions in crop breeding for sustainable agriculture. Springer, New York

    Google Scholar 

  • Kumar J (1998) Utilization of Lathyrus. In: Mathur PN, Ramanatha Rao V, Arora RK (eds) Lathyrus genetic resources network. (Proceedings of the IPGRI-ICARDA-ICAR regional working group meeting, 8–10 December 1997, New Delhi, India). International Plant Genetic Resources Institute-Office for South Asia, New Delhi, pp 57–59

    Google Scholar 

  • Kumar S, Dubey DK (1996) Variability and correlation studies in grasspea (Lathyrus sativus L.). FABIS Newslett 38(39):26–30

    Google Scholar 

  • Kumar G, Tripathi R (2007) Anomalous nucleolar and chromosomal organization in induced phenodeviants of grasspea. Cytologia 72:345–350

    Google Scholar 

  • Kumar S, Bejiga G, Ahmed S et al (2011) Genetic improvement of grasspea for low neurotoxin (ODAP) content. Food Chem Toxicol 49:589–600

    CAS  PubMed  Google Scholar 

  • Kumar S, Gupta P, Barpete S et al (2013) Grass pea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier, Amsterdam, pp 269–292. https://doi.org/10.1016/B978-0-12-397935-3.00011-6

    Chapter  Google Scholar 

  • Kumar S, Gupta P, Barpete S et al (2020) In: Pratap A, Gupta S (eds) Grass pea: the beans and the peas, from orphan to mainstream crops. Elsevier, Amsterdam, pp 273–287. eBook ISBN: 9780128214442

    Google Scholar 

  • Kumar S, Gupta P, Barpete S et al (2021) Grass pea. In: The beans and the peas. Woodhead Publishing, pp 273–287

    Google Scholar 

  • Kumari V, Mehra RB (1989) Nature and limitation to genetic base for quantitative traits in khesari. In: National symposium on recent advances in genetics and plant breeding research in India, pp 15–16

    Google Scholar 

  • Kumari V, Prasad R (2005) Model plant type in Khesari (Lathyrus sativus L.) suitable for hill farming. Lath Lath Newsletter 4:15–17

    Google Scholar 

  • Kumari V, Mehra RB, Raju DB et al (1993) Genetic basis of flower colour production in grasspea. Lath Lath Newsletter 5(1):10

    Google Scholar 

  • Kumari V, Mehra RB, Raju DB, Himabindu K (1995) Genetic variability and correlation studies in grasspea. Indian J Pulses Res 8:142–145

    Google Scholar 

  • Kuo Y-H, Ikegami F, Lambein F (2003) Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry 62:1087–1091. https://doi.org/10.1016/S0031-9422(02)00658-1

    Article  CAS  PubMed  Google Scholar 

  • Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes Roy Bot Gard Edinburgh 41:209–244

    Google Scholar 

  • Lal MS, Agrawal I, Chitale MW (1985) Genetic improvement of chickling vetch in Madhya Pradesh, India. In: Kaul AK, Combes D (eds) Lathyrus and Lathyrism. Proceedings at Collogue Lathyrus. Third World Medical Research Foundation, New York, pp 146–160

    Google Scholar 

  • Lal MS, Agrawal I, Chitale MW (1986) Genetic improvement of chickling vetch (Lathyrus sativus L.) in Madhya Pradesh, India. In: Kaul AK, Combes D (eds) Lathyrus and Lathyrism. Third World Medical Research Foundation, New York, pp 146–160

    Google Scholar 

  • Lambein F (2000) Homeopathy, longevity and Lathyrus sativus toxicity. Lath Lath Newsletter 1:4–5

    Google Scholar 

  • Lambein F, Kuo Y-H (2009) Lathyrism. Grain Legum 54:8–9

    Google Scholar 

  • Lambein F, Ongena G, Kuo Y (1990) Beta-isoxazolinone-alanine is involved in the biosynthesis of the neurotoxin beta-N-oxalyl-L-alpha, beta-diaminopropionic acid. Phytochemistry 12:3793

    Google Scholar 

  • Lambein F, Travella S, Kuo YH et al (2019) Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta 250(3):821–838

    CAS  PubMed  Google Scholar 

  • Lan G, Chen P, Sun Q et al (2013) Methods for treating hemorrhagic conditions. US Patent no. US 8,362,081 B2. http://www.freepatentsonline.com/83620 81.html

  • Leakey C (1979) Khesari dhal—the poisonous pea. Appropr Technol 6:15–16

    Google Scholar 

  • Lee J, Cao DV, Kim J et al (2017) Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L. In Vitro Cell Dev Biol Plant 53:97–103. https://doi.org/10.1007/s11627-017-9806-9

    Article  CAS  Google Scholar 

  • Linke KH, Abd El-Moneim AM, Saxena MC (1993) Variation in resistance of some forage legumes species to Orobanche crenata Forsk. Field Crops Res 32(3–4):277–285

    Google Scholar 

  • Lioi L, Galasso I (2013) Development of genomic simple sequence repeat markers from an enriched genomic library of grass pea (Lathyrus sativus L.). Plant Breed 132(6):649–653

    CAS  Google Scholar 

  • Lioi L, Sparvoli F, Sonnante G et al (2011) Characterization of Italian grasspea (Lathyrus sativus L.) germplasm using agronomic traits, biochemical and molecular markers. Genet Resour Crop Evol 58:425–437

    CAS  Google Scholar 

  • Liu S, Wang X, Wang H et al (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9:e1003790. https://doi.org/10.1371/journal.pgen.1003790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorent-Martínez EJ, Zengin G, Fernández-de Córdova ML et al (2017) Traditionally used Lathyrus species: phytochemical composition, antioxidant activity, enzyme inhibitory properties, cytotoxic effects, and in silico studies of L. czeczottianus and L. nissolia. Front Pharmacol 8:83

    PubMed  PubMed Central  Google Scholar 

  • Loudon JC, Don G, Wooster D (1855) Loudon’s encyclopædia of plants. Longman, Brown, Green and Longmans, London

    Google Scholar 

  • Lwin S (1956) Studies in the genus Lathyrus. MS Thesis. Manchester University

    Google Scholar 

  • Ma Y, Qin F, Tran LS (2012) Contribution of genomics to gene discovery in plant abiotic stress responses. Mol Plant 5:1176–1178. https://doi.org/10.1093/mp/sss085

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra NS, Das A, Bhattacharyya P et al (2020) Studies on genetic variability, divergence and association of characters in grass pea. J Crop Weed 16(1):155–161

    Google Scholar 

  • Mahler-Slasky Y, Kislev ME (2010) Lathyrus consumption in late bronze and iron age sites in Israel: an Aegean affinity. J Archaeol Sci 37(10):2477–2485

    Google Scholar 

  • Maji S, Das A, Nath R, Bandopadhyay P, Das R, Gupta S (2019) Cool season food legumes in rice fallows: an Indian perspective. In: Hasanuzzaman M (ed) Agronomic crops. Springer, Singapore, pp 561–605

    Google Scholar 

  • Majumdar DK (2011) Pulse crop production: principles and technologies. PHI Learning, New Delhi

    Google Scholar 

  • Malathi K, Padmanaban G, Rao SLN et al (1967) Studies on the biosynthesis of b-N-oxalo-L-a,b-diaminopropionic acid, the Lathyrus sativus neurotoxin. Biochim Biophys Acta 141:71–78

    CAS  PubMed  Google Scholar 

  • Malek MA (1998) Genetic resources of grass pea (Lathyrus sativus L.) in Bangladesh. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network: proceedings of a IPGRIICARDA-ICAR regional working group meeting. National Bureau of Plant Genetic Resources, New Delhi, pp 1–6

    Google Scholar 

  • Malek MA, Sarwar CDM, Sarker A et al (1996) Status of grass pea research and future strategy in Bangladesh. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia. International Plant Genetic Resources Institute, Rome, pp 7–12

    Google Scholar 

  • Malik KA, Ali-Khan ST, Saxena PK (1993) High-frequency organogenesis from direct seed culture in Lathyrus. Ann Bot 72(6):629–637

    CAS  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    CAS  PubMed  Google Scholar 

  • Marghali S, Touati A, Gharbi M et al (2016) Molecular phylogeny of Lathyrus species: insights from sequence-related amplified polymorphism markers. Genet Mol Res 15:198

    Google Scholar 

  • Marsden-Jones M (1919) Hybrids of Lathyrus. J R Hortic Soc 45:92–93

    Google Scholar 

  • Martín-Sanz A, Palomo JL, de la Vega MP et al (2012) Characterization of Pseudomonas syringae pv. syringae isolates associated with bacterial blight in Lathyrus spp. and sources of resistance. Eur J Plant Pathol 134(1):205–216

    Google Scholar 

  • Mathur PN, Ramanatha Rao V, Arora RK (1998) Lathyrus genetic resources network: proceeding of a IPGRI-ICARDA-ICAR regional working group meeting, 8–10 Dec 1997. NBPGR, IPGRI Office for South Asia, New Delhi

    Google Scholar 

  • Maxted N, Bennett S (2001) Plant genetic resources of legumes in the Mediterranean. Kluwer Academic, Dordrecht

    Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 20–55

    Google Scholar 

  • Maxted N, Hargreaves S, Kell SP et al (2012) Temperate forage and pulse legume genetic gap analysis. Bocconea 24:115–146

    Google Scholar 

  • McCallum CM, Comai L, Greene EA et al (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    CAS  PubMed  Google Scholar 

  • McCutchan JS (2003) Review: a brief history of grass pea and its use in crop improvement. Lath Lath Newsletter 3:18–23

    Google Scholar 

  • Mehra RB, Kumari V, Barat GK et al (1993) Behaviour of neurotoxin content in some crosses of grasspea (Lathyrus sativus L.). Lathyrus Lathyrism 2(122):8

    Google Scholar 

  • Mehra RB, Raju DB, Himabindu K (1995) Status paper on Lathyrus research. Division of Genetics, IARI, New Delhi, pp 1–7

    Google Scholar 

  • Mehta SL (1997) Plant biotechnology for removal of ODAP from Lathyrus. In: Hainranot RT, Lambein F (eds) Lathyrus and lathyrism, a decade of progress. University of Ghent, Belgium, pp 103–104

    Google Scholar 

  • Mehta SL, Santha IM (1996) Plant biotechnology for development of non-toxic strains of Lathyrus sativus. In: Lathyrus genetic resources in Asia. International Plant Genetic Resources Institute, Rome, p 129

    Google Scholar 

  • Mera M (2010) Inheritance of seed weight in large-seed grass pea Lathyrus sativus L. Chil J Agric Res 70:357–364

    Google Scholar 

  • Mera M, Tay J, France A et al (2003) Luanco-INIA, a large-seeded cultivar of Lathyrus sativus released in Chilw. Lath Lath Newsletter 3:26

    Google Scholar 

  • Mikić A, Mihailović V, Ćupina B et al (2011) Towards the re-introduction of grass pea (Lathyrus sativus) in the West Balkan Countries: the case of Serbia and Srpska (Bosnia and Herzegovina). Food Chem Toxicol 49(3):650–654

    PubMed  Google Scholar 

  • Milczak M, Pedizinski M, Mnichowska H et al (2001) Creative breeding of grass pea (Lathyrus sativus) in Poland. Lath Lath Newslet 2:85–88

    Google Scholar 

  • Mondal MMA, Puteh AB (2014) Spectrum of variability in seed size and content of protein and ODAP in grass pea (Lathyrus sativus L.) germplasm. Legum Res 37(5):479–482

    Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13(2):85–96

    CAS  Google Scholar 

  • Murray BG, Bennett MD, Hammett KRW (1992a) Secondary constrictions and NORs of of Lathyrus investigated by silver staining and in-situ hybridization. Heredity 68(5):473–478

    Google Scholar 

  • Murray BG, Hammett KRW, Standring LS (1992b) Genomic constancy during the development of Lathyrus odoratus cultivars. Heredity 68(4):321–327

    Google Scholar 

  • Muthamilarasan M, Theriappan P, Prasad M (2013) Recent advances in crop genomics for ensuring food security. Curr Sci 105:155–158

    Google Scholar 

  • Muthamilarasan M, Venkata Suresh B, Pandey G et al (2014) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52. https://doi.org/10.1093/dnares/dst039

    Article  CAS  PubMed  Google Scholar 

  • Narayan RKJ, Durrant A (1983) DNA distribution in chromosomes of Lathyrus species. Genetica 61:47–53

    CAS  Google Scholar 

  • Narsinghani VG, Kumar SM (1979) The field reaction to powdery and downy mildew in Lathyrus genetic stock. Ind J Mycol Plant Pathol 9(2):252–253

    Google Scholar 

  • Nerkar YS (1972) Induced variation and response to selection for low neurotoxin content in Lathyrus sativus L. Indian J Genet Plant Breed 32(2):175–180

    CAS  Google Scholar 

  • Nerkar YS (1976) Mutation studies in Lathyrus sativus. Indian J Genet 76:223–229

    Google Scholar 

  • Neupane RK, Tiwari DN (2005) Grasspea as a food and feed crop in crop-livestock systems of Nepal. In: Paper presented at the workshop at ICARDA

    Google Scholar 

  • Neupane RK, Shrestha R, Darai R (2017) Food legumes: diversity, utilization and conservation status. In: Joshi BK, Bahadur KC, Hari A, Kumar A (eds) Conservation and utilization of agricultural plant genetic resources in Nepal. Proceedings of 2nd National Workshop, May, pp 22–23

    Google Scholar 

  • Nosrati H, Hosseinpour-Feizi MA, Nikniazi M et al (2012) Genetic variation among diff erent accessions of Lathyrus sativus (Fabaceae) revealed by RAPDs. Bot Serb 36(1):41–47

    Google Scholar 

  • Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investig Genet 5:1

    PubMed  PubMed Central  Google Scholar 

  • Ochatt SJ, Durieu P, Jacas L et al (2001) Protoplast, cell and tissue cultures for the biotechnological breeding of grasspea (Lathyrus sativus L.). Lath Lath Newsletter 2:35–38

    Google Scholar 

  • Ochatt SJ, Sangwan RS, Marget P et al (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–444

    Google Scholar 

  • Palta JA, Turner NC, French RJ et al (2007) Physiological responses of lupin genotypes to terminal drought in a Mediterranean-type environment. Ann Appl Biol 150(3):269–279

    Google Scholar 

  • Palta JA, Berger JD, Bramleyand H (2012) Physiology of the yield under drought: lessons from studies with lupin. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Heidelberg, pp 417–440

    Google Scholar 

  • Pandey RL, Kashyap OP (1995) Studies on socio-economic strata and Lathyrus consumption in rural Madhya Pradesh. In: Yusuf HKM, Lambein F (eds) Lathyrus sativus and human lathyrism: progress and prospects. University of Dhaka, Dhaka, pp 47–50

    Google Scholar 

  • Pandey RL, Agrawal SK, Chitale MW et al (1995a) Catalogue on grasspea (L. sativus L.) germplasm. Indira Gandhi Agricultural University, Raipur

    Google Scholar 

  • Pandey RL, Chitale MW, Sharma RN et al (1995b) Catalogue on grasspea (Lathyrus sativus) germplasm. Indira Gandhi Krishi Vishwavidyalaya, Raipur, p 60

    Google Scholar 

  • Pandey RL, Chitale MW, Sharma RN et al (1996) Status of Lathyrus research in India. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia: proc regional workshop. Indira Gandhi Agricultural University, IPGRI Office for South Asia, Raipur, New Delhi, pp 45–52

    Google Scholar 

  • Pandey RL, Chitale MW, Sharma RN et al (1997) Evaluation and characterization of germplasm of grasspea (Lathyrus sativus). J Med Aromat Plant Sci 19:14–16

    Google Scholar 

  • Pandey RL, Sharma RN, Chitale MW (1998) Status of Lathyrus genetic resources in India. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network. Proc IPGRI-ICARDA-ICAR regional working group meeting. ICARDA, New Delhi, pp 7–14

    Google Scholar 

  • Pandey RL, Shrivastava P, Geda AK et al (2000) Relative contribution of yield components and their relationship with neurotoxin content in grass pea (L. sativus L.). Ann Agric Res 21:11–16

    Google Scholar 

  • Pañeda C, Villar AV, Alonso A et al (2001) Purification and characterization of insulin-mimetic inositol phosphoglycan-like molecules from grass pea (Lathyrus sativus) seeds. Mol Med 7(7):454–460

    PubMed  PubMed Central  Google Scholar 

  • Parihar AK, Gupta S (2016) Lathyrus cultivation in India (pocket guide). Project Coordinator, AICRP on MULLaRP, ICAR-IIPR, Kanpur, pp 1–7

    Google Scholar 

  • Parihar AK, Dixit GP, Singh D (2013) Multivariate analysis of various agronomic traits in grasspea (Lathyrus spp.) germplasm. Indian J Agric Sci 83(5):570–575

    Google Scholar 

  • Parihar AK, Dixit GP, Singh D (2015) Genetic variability analysis for quantitative traits in a germplasm set of grasspea (Lathyrus spp.). Legum Res 38(4):461–464

    Google Scholar 

  • Parihar AK, Dixit GP, Singh D (2016) Gene interactions and genetics for yield and its attributes in grass pea (Lathyrus sativus L.). J Genet 95(4):947–956

    CAS  PubMed  Google Scholar 

  • Pastor-Cavada E, Juan R, Pastor JE et al (2009) Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT Food Sci Technol 42(3):705–709

    CAS  Google Scholar 

  • Pastor-Cavada E, Juan R, Pastor JE et al (2011) Nutritional characteristics of seed proteins in 15 Lathyrus species (fabaceae) from southern Spain. LWT Food Sci Technol 44(4):1059–1064

    CAS  Google Scholar 

  • Peña-Chocarro L, Peña LLZ (1999) History and traditional cultivation of Lathyrus sativus L. and Lathyrus citera L. in the Iberian peninsula. Veg Hist Archaeobotany 8(1):49–52

    Google Scholar 

  • Piwowarczyk B, Pindel A (2015) Determination of an optimal isolation and culture conditions of grass pea protoplasts. J Biotechnol Comput Biol Bionanotechnol 96(2):192–202

    CAS  Google Scholar 

  • Polignano G, Uggenti B, Alba P et al (2005a) Morpho-agronomic diversity in grass pea (Lathyrus sativus L.). Plant Genet Resour 3(1):29–34. https://doi.org/10.1079/PGR200455

    Article  CAS  Google Scholar 

  • Polignano GB, Uggenti P, Olita G et al (2005b) Characterization of grass pea (Lathyrus sativus L.) entries by means of agronomically useful traits. Lath Lath Newsletter 4:10–14

    Google Scholar 

  • Polignano GB, Bisignano V, Tomaselli V et al (2009) Genotype× environment interaction in grass pea (Lathyrus sativus L.) lines. Int J Agron 2009:898396. https://doi.org/10.1155/2009/898396

    Article  Google Scholar 

  • Ponnaiah M, Shiferaw E, Pe ME et al (2011) Development and application of EST-SSRs for diversity analysis in Ethiopian grass pea. Plant Genet Res 9(2):276–280

    CAS  Google Scholar 

  • Prasad AB, Das AK (1980a) Relative sensitivity of some varieties of Lathyrus sativus L. to gamma irradiation. J Cytol Genet 15(2):156–165

    Google Scholar 

  • Prasad AB, Das AK (1980b) J Indian Bot 59:354–359

    Google Scholar 

  • Quader M (1985) Genetic analysis of neurotoxin content and some aspects of reproductive biology in Lathyrus sativus L. PhD thesis submitted to the Division of Genetics, Indian Agricultural Research Institute, New Delhi, India

    Google Scholar 

  • Quader M (1987) Male sterility in Lathyrus sativus L. Bangladesh J Bot 16(1):9–13

    Google Scholar 

  • Quader M, Singh SP, Barat GK (1987) Genetic analysis of BOAA content in Lathyrus sativus L. Indian J Genet Breed 47:275–279

    Google Scholar 

  • Radwan Safaa A, El-Koly AS, Sammour R (2013) Genetic variation among accessions of Lathyrus inconspicuous (L.) as revealed by SDS polyacrylamide gel electrophoresis/Analiza genetske variabilnosti akcesij grahorja (Lathyrus inconspicuous (L.)) s SDS poliakrilamidno gelsko elektroforezo. Acta Agric Slov 101:no. 1:21

    Google Scholar 

  • Rahman QN, Akhtar N, Chowdhury AM (1974) Proximate composition of food-stuffs in Bangladesh. Part 1. Cereals and pulses. J Sci Ind Res 9:129–133

    Google Scholar 

  • Rahman MM, Kumar J, Rahaman MA et al (1995) Natural outcrossing in Lathyrus sativus L. Indian J Genet 55:204–207

    Google Scholar 

  • Rahman MA, Rahman MM, Akhtaruzzaman M (2001) Progress in isolation and purification of Lathyrus sativus breeding lines. Lath Lath Newsletter 2:39–40

    Google Scholar 

  • Rajendran K, Sarker A, Singh M et al (2019) Variation for seed protein and ODAP content in grass pea (Lathyrus sativus L.) germplasm collections. Indian J Genet 79(2):438–443

    CAS  Google Scholar 

  • Ramanujam S, Sethi KL, Rao SLN (1980) Stability of neurotoxin content in Khesari. Indian J Genet Plant Breed 40:300–304

    CAS  Google Scholar 

  • Rao SLN (2011) A look at the brighter facets of β-N-oxalyl-L-α, β-diaminopropionic acid, homoarginine and the grass pea. Food Chem Toxicol 49(3):620–622

    CAS  PubMed  Google Scholar 

  • Rao SLN, Ramachandran LK, Adiga PR (1963) The isolation and characterization of l-homoarginine from seeds of Lathyrus sativus. Biochemistry 2(2):298–300

    CAS  PubMed  Google Scholar 

  • Rathi D, Gayali S, Pareek A et al (2019) Transcriptome profiling illustrates expression signatures of dehydration tolerance in developing grasspea seedlings. Planta 250(3):839–855

    CAS  PubMed  Google Scholar 

  • Rius M, Bourne S, Hornsby HG et al (2015) Applications of next-generation sequencing to the study of biological invasions. Curr Zool 61(3):488–504

    Google Scholar 

  • Rizvi AH, Sarker A, Dogra A (2016) Enhancing grass pea (Lathyrus sativus L.) production in problematic soils of South Asia for nutritional security. Indian J Genet Plant Breed 76:583–592

    Google Scholar 

  • Robertson LD, Abd El-Moneim AM (1995) Lathyrus germplasm collection, conservation and utilization for crop improvement at ICARDA. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus Genetic Resources in Asia. Proceedings of a Regional Workshop, 27–29 December 1995. Indira Gandhi Agricultural University, IPGRI Office for South Asia, Raipur, New Delhi, pp 97–111

    Google Scholar 

  • Robertson JR, Abd El-Moneim AM (1996) Lathyrus germplasm collection, conservation and utilization for crop improvement at ICARDA. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia: proceedings of regional workshop. Indira Gandhi Agricultural University, IPGRI, Office for South Asia, Raipur, New Delhi, pp 97–111

    Google Scholar 

  • Robertson LD, Abd El-Moneim AM (1997) Status of Lathyrus germplasm held at ICARDA and its use in breeding programmes. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network. Proceedings of a IPGRI-ICARDA-ICAR regional working group meeting, 8–10 December, New Delhi, India, pp 30–41

    Google Scholar 

  • Robertson LD, Abd El-Moneim AM (1998) Status of Lathyrus germplasm held at ICARDA and its use in breeding programmes. In: Mathur PN, Ramanatha Rao V, Arora RK (eds) Lathyrus genetic resources network: proceeding of a IPGRI-ICARDA-ICAR regional working group meeting, 8–10 Dec 1997. NBPGR, IPGRI Office for South Asia, New Delhi, India

    Google Scholar 

  • Roy PK, Singh B, Mehta SL et al (1991) Plant regeneration from leaf disc of Lathyrus sativus. Indian J Exp Bot 29:327–330

    Google Scholar 

  • Roy PK, Barat GK, Mehta SL (1992) In vitro plant regeneration from callus derived from root explants of Lathyrus sativus. Plant Cell Tissue Organ Cult 29:135–138

    CAS  Google Scholar 

  • Roy PK, All K, Gupta A et al (1993) β-N-Oxalyl-L-α, β-diaminopropionic acid in somaclones derived from internode explants of Lathyrus sativus. J Plant Biochem Biotechnol 2:9–13

    CAS  Google Scholar 

  • Rumbaugh MD, Griffin GD (1992) Resistance of Lathyrus species and accessions to the northern root-knot nematode, Meloidogyne hapla. J Nematol 24(4S):729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rybinski W (2003) Mutagenesis as a tool for improvement of trait in grass pea (Lathyrus sativus L.). Lath Lath Newsletter 3:27–31

    Google Scholar 

  • Rybinski W, Karamac M, Sulewska K et al (2018) Antioxidant potential of grass pea seeds from European countries. Foods 7:142. https://doi.org/10.3390/foods7090142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacristán M, Varela A, Pedrosa MM et al (2015) Determination of β-N-oxalyl-l-α, β-diaminopropionic acid and homoarginine in Lathyrus sativus and Lathyrus cicera by capillary zone electrophoresis. J Sci Food Agric 95(7):1414–1420

    PubMed  Google Scholar 

  • Sammour RH (1991) Systematic position of the genus Cicer L. (Fabaceae) from data on DNA/DNA hybridization. Folia Geobot Phytotaxon 26(1):95–100

    Google Scholar 

  • Sammour RH, Mustafa AEZ, Badr S et al (2007a) Genetic variability of some quality traits in Lathyrus spp. germplasm. Acta Agric Slov 90(1):33–43

    CAS  Google Scholar 

  • Sammour R, Mustafa AE, Badr S et al (2007b) Genetic variations in accessions of Lathyrus sativus L. Acta Bot Croat 66(1):1–13

    CAS  Google Scholar 

  • Sampaio AM, Rubiales D, Patto MCV (2021) Grass pea and pea phylogenetic relatedness reflected at Fusarium oxysporum host range. Crop Prot 141:105495

    Google Scholar 

  • Santha IM, Mehta SL (2001) Development of low ODAP somaclones of Lathyrus sativus. Lath Lath Newsletter 2:42

    Google Scholar 

  • Santha IM, Ali K, Mehta SL (1998) Performance of low ODAP somaclones of Lathyrus sativus. In: Mathur PN, Ramanatha Rao V, Arora RK (eds) Lathyrus genetic resources network: proceeding of a IPGRI-ICARDA-ICAR regional working group meeting, 8–10 Dec 1997. NBPGR, IPGRI Office for South Asia, New Delhi

    Google Scholar 

  • Santos C, Almeida NF, Alves ML et al (2018) First genetic linkage map of Lathyrus cicera based on RNA sequencing-derived markers: key tool for genetic mapping of disease resistance. Hortic Res 5(1):1–14

    CAS  Google Scholar 

  • Sarkar RK, Biswas B, Malik GC (2003) Productivity of grasspea (Lathyrus sativus L.) under different levels of phosphorus and foliar spray of molybdenum. Lath Lath Newsletter 3(1):36–37

    Google Scholar 

  • Sarkar A, Emmrich PM, Sarker A et al (2019) Grass Pea: remodeling an ancient insurance crop for climate resilience. In: Kole C (ed) Genomic designing of climate-smart pulse crops. Springer, Cham, pp 425–469

    Google Scholar 

  • Sarker A, Abd El Moneim AM, Maxted N (2001) Grasspea and chicklings (Lathyrus L.). In: Plant genetic resources of legumes in the Mediterranean. Springer, Dordrecht, pp 159–180

    Google Scholar 

  • Sarmento A, Barros L, Fernandes  et al (2015) Valorization of traditional foods: nutritional and bioactive properties of Cicer arietinum L. and Lathyrus sativus L. pulses. J Sci Food Agric 95(1):179–185

    CAS  PubMed  Google Scholar 

  • Sarwar CDM, Malek MA, Sarker A et al (1995a) Genetic resources of grass pea (Lathyrus sativus L.) in Bangladesh. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia. Proceedings of a regional workshop, 27–29 December, 1995. Indira Gandhi Agricultural University, IPGRI Office for South Asia, Raipur, New Delhi, pp 13–19

    Google Scholar 

  • Sarwar CDM, Sarkar A, Murshed ANMM et al (1995b) Variation in natural population of grass pea. In: Yusuf HKM, Lambein F (eds) Lathyrus sativus and human lathyrism: progress and prospects. Proceedings of the 2nd Int. Colloq. Lathyrus/Lathyrism, Dhaka, 10–12 December 1993. University of Dhaka, Dhaka, pp 161–164

    Google Scholar 

  • Saxena MC, Abd El Moneim AM, Raninam M (1993) Vetches (Vicia spp.) and chicklings (Lathyrus spp.) in the farming systems in West Asia and North Africa and improvement of these crops at ICARDA. In: Garlinge JR, Perry MW (eds) Potential for vicia and Lathyrus species as new grain and fodder legumes for southern Australia. CLIMA, Perth, pp 2–9

    Google Scholar 

  • Schaefer H, Hechenleitner P, Santos-Guerra A et al (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol Biol 12:250

    PubMed  PubMed Central  Google Scholar 

  • Schifino-Wittmann MT (2000) The cytogenetics and evolution of forage legumes from Rio Grande do Sul: a review. Genet Mol Biol 23(4):989–995

    Google Scholar 

  • Schifino-Wittman MT, Lan AH, Simioni C (1994) The genera Vicia and Lathyrus in Rio Grande do Sul (southern Brazil): cytogenetic of native, naturalized and exotic species. Brazilian J Genet 17:313–319

    Google Scholar 

  • Schifino-Wittmann MT (2001) Germplasm characterisation of some Lathyrus species native to Rio Grande do Sul (southern Brazil). Editor’s comment, pp 89–90

    Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18

    CAS  PubMed  Google Scholar 

  • Seijo JG, Fernandez A (2001) Cytogenetic analysis in Lathyrus japonicus wild. (Leguminosae). Caryologia 66:173–179

    Google Scholar 

  • Sethi KL, Mehra RB, Lal BM (1987) Studies on variability and correlation between toxin content and seed weight in Lathyrus sativus L. Sci Cult 47(7):263–264

    Google Scholar 

  • Shahiquzzaman GM, Kabir G (1994) Intraspecific variation in the karyotype of Lathyrus sativus L. Bangladesh J Bot 23(2):193–197

    Google Scholar 

  • Sharma RN, Kashyap OP, Chitale MW et al (1997) Genetic analysis for seed attributes over the years in grass pea (Lathyrus sativus L.). Indian J Genet Plant Breed 57(2):154–157

    Google Scholar 

  • Sharma RN, Chitale MW, Ganvir GB et al (2000) Observations on the development of selection criterion for high yield and low neurotoxin in grass pea based on genetic resources. Lath Lath Newsletter 1:15–16

    Google Scholar 

  • Sharma D, Singh P, Singh SS (2018) β-N-oxalyl-l-α,β-diaminopropionic acid induces wound healing by stabilizing HIF-1α and modulating associated protein expression. Phytomedicine 44:9–19. https://doi.org/10.1016/j.phymed.2018.04.024

    Article  CAS  PubMed  Google Scholar 

  • Shashikumar KT, Pitchaimuthu M, Rawal RD (2010) Generation mean analysis of resistance to Downey mildew in adult muskmelon plants. Euphytica 173:121–127

    Google Scholar 

  • Shiferaw E, Porceddu E (2018) Assessment of variability in grass pea germplasm using β-ODAP content and seed protein electrophoresis. Ann Food Sci Technol 19:316–323

    CAS  Google Scholar 

  • Shiferaw E, Pè ME, Porceddu E et al (2012) Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breed 30(2):789–797

    CAS  PubMed  Google Scholar 

  • Siddique KHM, Loss SP, Herwig SP et al (1996) Growth, yield and neurotoxin (ODAP) concentration of three Lathyrus species in Mediterranean type environments of Western Australia. Aust J Exp Agric 36:209–218

    Google Scholar 

  • Siddique KHM, Hanbury CL, Sarker A (2006) Registration of ‘Ceora’ grass pea. Crop Sci 46:986

    Google Scholar 

  • Sillero JC, Cubero JI, Fernández-Aparicio M et al (2005) Search for resistance to crenate broomrape (Orobanche crenata) in Lathyrus. Lath Lath Newsletter 4:7–9

    Google Scholar 

  • Silvestre S, de Sousa AS, Vaz Patto MC et al (2014) Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. J Integr Plant Biol 56(7):610–621

    PubMed  Google Scholar 

  • Singh MA, Chaturvedi SN (1997) Effectiveness and efficiency of mutagens alone or in combination with dimethyl sulphoxide in Lathyrus sativus Linn. Indian J Agric Sci 57:503–507

    Google Scholar 

  • Singh SS, Rao SLN (2013) Lessons from neurolathyrism: a disease of the past & the future of Lathyrus sativus (Khesari dal). Indian J Med Res 138(1):32

    PubMed  PubMed Central  Google Scholar 

  • Skiba B, Ford R, Pang ECK (2004a) Genetics of resistance to Mycosphaerella pinodes in Lathyrus sativus. Aust J Agric Res 55(9):953–960

    CAS  Google Scholar 

  • Skiba B, Ford R, Pang ECK (2004b) Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor Appl Genet 109:1726–1735

    CAS  PubMed  Google Scholar 

  • Skiba B, Gurung AM, Pang EC (2007) Genome mapping and molecular breeding in Lathyrus. In: Kole C (ed) Pulses, sugar and tuber crops. Springer Science & Business Media, Berlin, pp 123–132

    Google Scholar 

  • Smartt J (1984) Evolution of grain legumes. 1. Mediterranean pulses. Exp Agric 20:275–296

    Google Scholar 

  • Smýkal P, Kenicer G, Flavell AJ et al (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour 9:4–18

    Google Scholar 

  • Snoad B (1974) A preliminary assessment of leafless peas. Euphytica 23(2):257–265

    Google Scholar 

  • Soren KR, Yadav A, Pandey G et al (2015) EST-SSR analysis provides insights about genetic relatedness, population structure and gene flow in grass pea (Lathyrus sativus). Plant Breed 134(3):338–344

    Google Scholar 

  • Soren KR, Konda AK, Gangwar P et al (2020) Development of SSR markers and association studies of markers with phenology and yield-related traits in grass pea (Lathyrus sativus). Crop Pasture Sci 71(8):768–775

    CAS  Google Scholar 

  • Srivastava YC, Somayajulu PLN (1981) Male sterility in Lathyrus. Indian J Genet 41(1):1964–1966

    Google Scholar 

  • Srivastava RP, Singh J, Singh NP et al (2015) Neurotoxin and other anti-nutrients of khesari (Lathyrus sativus) genotypes and their reduction by water soaking and dehusking. Indian J Agric Biochem 28(2):172–177

    CAS  Google Scholar 

  • Sun XL, Yang T, Guan JP et al (2012) Development of 161 novel EST-SSR markers from Lathyrus sativus (Fabaceae). Am J Bot 99(10):e379–e390

    PubMed  Google Scholar 

  • Syouf MQA (1995) Natural distribution and utilization of Lathyrus in Jordan. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia. Proceedings of a regional workshop, 27–29 December 1995. Indira Gandhi Agricultural University, IPGRI Office for South Asia, Raipur, New Delhi, pp 67–76

    Google Scholar 

  • Tadesse W (2003) Stability of grasspea (Lathyrus sativus L.) varieties for ODAP content and grain yield in Ethiopia. Lath Lath Newsletter 3:32–34

    Google Scholar 

  • Tadesse W, Bekele E (2003) Variation and association of morphological and biochemical characters in grass pea (Lathyrus sativus L.). Euphytica 130(3):315–324

    CAS  Google Scholar 

  • Tadesse W, Bekele E (2004) Isozymes, protein and ODAP variability of grasspea (Lathyrus sativus L.) in Ethiopia. SINET Ethiop J Sci 27(2):153–160

    Google Scholar 

  • Talukdar D (2009a) Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.). Afr J Agric Res 4(11):1549–1559

    Google Scholar 

  • Talukdar D (2009b) Reciprocal translocations in grass pea (Lathyrus sativus L.): pattern of transmission, detection of multiple interchanges and their independence. J Hered 101:169–176

    PubMed  Google Scholar 

  • Talukdar D (2009c) Dwarf mutations in grass pea (Lathyrus sativus L.): origin, morphology, inheritance and linkage studies. J Genet 88:165–175

    PubMed  Google Scholar 

  • Talukdar D (2009d) Association of seed yield components along with seed neurotoxin content in different varieties and induced mutant lines of grass pea (Lathyrus sativus L.). Int J Plant Sci 4:378–380

    Google Scholar 

  • Talukdar D (2010) Allozyme variations in leaf esterase and root peroxidase isozymes and linkage with dwarfing genes in induced dwarf mutants of grass pea (Lathyrus sativus L.). Int J Genet Mol Biol 2(6):112–120

    CAS  Google Scholar 

  • Talukdar D (2011a) Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J Med Plant Res 5:3619–3628

    CAS  Google Scholar 

  • Talukdar D (2011b) Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L. during germination and early seedling growth. Curr Res J Biol Sci 3(2):116–123

    CAS  Google Scholar 

  • Talukdar D (2012a) An induced glutathione-deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Bioremed Biodiver Bioavail 6:75–86

    Google Scholar 

  • Talukdar D (2012b) Changes in neurotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), level in grass pea (Lathyrus sativus L.) genotypes under arsenic treatments. J Appl Biosci 38:148–153

    CAS  Google Scholar 

  • Talukdar D (2012c) Total flavonoids, phenolics, tannins and antioxidant activity in seeds of lentil and grass pea. Int J Phytomed 4:537

    CAS  Google Scholar 

  • Talukdar D (2013) Arsenic exposure modifies Fusarium wilt tolerance in grass pea (Lathyrus sativus L.) genotypes through modulation of antioxidant defense response. J Plant Sci Mol Breed 2(4):12

    Google Scholar 

  • Talukdar D, Biswas AK (2006) An induced mutant with different flower colour and stipule morphology. Indian J Genet 66:365–367

    Google Scholar 

  • Talukdar D, Biswas AK (2007) Retraction: seven different primary Trisomics in grass pea (Lathyrus sativus L.). I. Cytogenetic characterisation. Cytologia 72(4):385–339

    Google Scholar 

  • Talukdar D, Biswas AK (2008) Seven different primary trisomics in grass pea (Lathyrus sativus L.). II Pattern of transmission. Cytologia 73:129–136

    Google Scholar 

  • Talukdar D, Biswas SC, Biswas AK (2001) An induced dwarf mutant of grasspea. Indian J Genet 61(4):383–384

    Google Scholar 

  • Tamburino R, Guida V, Pacifico S et al (2012) Nutritional values and radical scavenging capacities of grass pea (‘Lathyrus sativus’ L.) seeds in Valle Agricola district, Italy. Aust J Crop Sci 6(1):149–156

    CAS  Google Scholar 

  • Tan RY, Xing GY, Zhou GM et al (2017) Plant toxin β-ODAP activates integrin β1 and focal adhesion: a critical pathway to cause neurolathyrism. Sci Rep 7:40677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon JP, Sharma SP, Sandhu JS et al (2015) Guidelines for testing crop varieties under the all-India coordinated crop improvement projects. Indian Council of Agricultural Research, New Delhi, India

    Google Scholar 

  • Tanksley SD, Young ND, Paterson AH et al (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7(3):257–264

    CAS  Google Scholar 

  • Tarade KM, Singhal RS, Jayram RV et al (2007) Kinetics of degradation of ODAP in Lathyrus sativus L. flour during food processing. Food Chem 104(2):643–649

    CAS  Google Scholar 

  • Tavoletti S, Iommarini L (2007) Molecular marker analysis of genetic variation characterizing a grass pea (Lathyrus sativus) collection from Central Italy. Plant Breed 126:607–611

    CAS  Google Scholar 

  • Tekle-Haimanot R, Abegaz BM, Wuhib E et al (1993) Pattern of Lathyrus sativus (grass pea) consumption and b-N-oxalyl-a,b-diaminopropionic acid (b-ODAP) content. Nutr Res 13:1113–1126

    CAS  Google Scholar 

  • Tekle-Hainamot R, Abegaz B, Wuhib E et al (1995) Nutritional and neurotoxicological surveys of Lathyrus sativus consumption in Northern Ethiopia. In: Lathyrus sativus and human lathyrism: progress and prospects. University of Dhaka, Dhaka, pp 41–45

    Google Scholar 

  • Teshager AA (2019) Role of grass pea (Lathyrus sativus L.) in nutrition security and risk of neurolathyrism. Glob Sci J 7(5):382–390

    Google Scholar 

  • Tiwari KR, Campbell CG (1996) Inheritance of neurotoxin (ODAP) content, flower and seed coat color in grass pea (Lathyrus sativus L.). Euphytica 91:195–203

    CAS  Google Scholar 

  • Townsend CC, Guest E (1974) Flora of Iraq. In: Leguminales, vol 3. Ministry of Agriculture and Agrarian Reform, Bagdad, Iraq

    Google Scholar 

  • Trankovskij DA (1962) Interspecific hybridization in the genus Lathyrus. Bull Mosc Nat Biol Ser 67:140–141

    Google Scholar 

  • Tripathy SK, Swain D, Mishra PK et al (2014) Optimization of callus induction in Lathyrus sativus L. Afr J Food Sci Technol 5(3):60–66

    Google Scholar 

  • Tripathy SK, Ranjan R, Dash S et al (2015) Genetic analysis of BOAA content in grasspea (Lathyrus sativus L.). Legum Res 38(4):465–468

    Google Scholar 

  • Tripathy SK, Panda A, Nayak PK et al (2016) Somaclonal variation for genetic improvement in grasspea (Lathyrus sativus L.). Legum Res 39(3):329–335

    Google Scholar 

  • Trivedi RK, Gunasekaran M (2013) Indian minimum seed certification standards. The Central Seed Certification Board, Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India, New Delhi, pp 401–402

    Google Scholar 

  • Tsegay BA, Andargie M (2018) Seed priming with gibberellic acid (GA 3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum Var. abyssinicum A. Braun and Lathyrus sativus L. J Crop Sci Biotechnol 21(3):261–267

    Google Scholar 

  • Ulloa P, Mera M (2010) Inheritance of seed weight in large-seed grass pea Lathyrus sativus L. Chil J Agric Res 70(3):357–364

    Google Scholar 

  • Unal F, Wallace AJ, Callow RS (1995) Diverse heterochromatin in Lathyrus. Caryologia 48:47–63

    Google Scholar 

  • Unver T, Budak H (2009) Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genomics 198:680. https://doi.org/10.1155/2009/198680

    Article  CAS  Google Scholar 

  • Urga K, Fite A, Kebede B (1995) Nutritional and antinutritional factors of grass pea (Lathyrus sativus) germplasms. Bull Chem Soc Ethiop 9(1):9–16

    Google Scholar 

  • Urga K, Fufa H, Biratu E et al (2005) Evaluation of Lathyrus sativus cultivated in Ethiopia for proximate composition, minerals, β-ODAP and anti-nutritional components. Afr J Food Agric Nutr Dev 5(1):1–15

    Google Scholar 

  • Van Wyk SG, Kunert KJ, Cullis CA et al (2016) Review: the future of cystatin engineering. Plant Sci 246:119–127

    PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    CAS  PubMed  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883. https://doi.org/10.1371/journal.pbio.1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants. Ronald Press, New York, NY

    Google Scholar 

  • Vaz Patto MC, Rubiales D (2009) Identification and characterization of partial resistance to rust in a germplasm collection of Lathyrus sativus L. Plant Breed 128:495–500

    Google Scholar 

  • Vaz Patto MC, Rubiales D (2014a) Lathyrus diversity: available resources with relevance to crop improvement—L. sativus and L. cicera as case studies. Ann Bot 113(6):895–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaz Patto MC, Rubiales D (2014b) Resistance to rust and powdery mildew in Lathyrus crops. Czech J Genet Plant Breed 50:116–122

    Google Scholar 

  • Vaz Patto MC, Fernández-Aparicio M, Moral A et al (2006a) Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus sativus. Plant Breed 125:308–310

    Google Scholar 

  • Vaz Patto MC, Skiba B, Pang ECK et al (2006b) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147

    Google Scholar 

  • Vaz Patto MC, Hanbury CD, Moorhem MV et al (2011) Grass pea. In: Kole C (ed) Genetics, genomics and breeding of cool season grain legumes. Genetics, genomics and breeding of crop plants. Science, Enfield, pp 151–204

    Google Scholar 

  • Vaz-Patto MC, Moral A, Rubiales D (2004) Resistance to powdery mildew and rust fungi in Lathyrus species. In: Proceedings of the 5th european conference on grain legumes/second international conference on legume genomics and genetics. AEP, Dijon, p 64

    Google Scholar 

  • Vioque R, De los Mozos-Pascual M, Rodríguez-Conde MF (2009) Contents of total protein and β-N-oxalyl-l-α, β-diaminopropionic acid (ODAP) in a collection of Lathyrus cicera of the Bank of Plant Germplasm of Cuenca (Spain). Plant Breed 128(3):317–320

    CAS  Google Scholar 

  • Waghmare VN, Waghmare DN, Mehra RB (2001) An induced fasciated mutant in grass pea (Lathyrus sativus L.). Indian J Genet 61:155–157

    Google Scholar 

  • Wang X, Warkentin TD, Briggs CJ et al (1998) Total phenolics and condensed tannins in field pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). Euphytica 101(1):97–102

    CAS  Google Scholar 

  • Wang F, Yang T, Burlyaeva M et al (2015) Genetic diversity of grasspea and its relative species revealed by SSR markers. PLoS One 10(3):e0118542

    PubMed  PubMed Central  Google Scholar 

  • Watt G (1980) A dictionary of economic product of India, vol 4, pp 590–594

    Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    CAS  PubMed  Google Scholar 

  • Xiong JL, Xiong YC, Bai X et al (2015) Genotypic variation in the concentration of β-N-Oxalyl-L-α, β-diaminopropionic acid (β-ODAP) in grass Pea (Lathyrus sativus L.) seeds is associated with an accumulation of leaf and pod β-ODAP during vegetative and reproductive stages at three levels of water stress. J Agric Food Chem 63(27):6133–6141

    CAS  PubMed  Google Scholar 

  • Xu Q, Liu F, Chen P et al (2017) Beta-N-oxalyl-L-diaminopropionic acid (b-ODAP) content in Lathyrus sativus: the integration of nitrogen and sulfur metabolism through Cyanoalanine synthase. Int J Mol Sci 18:526. https://doi.org/10.3390/ijms18030526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Liu F, Qu R et al (2018) Transcriptomic profiling of Lathyrus sativus L. metabolism of β-ODAP, a neuroexcitatory amino acid associated with neurodegenerative lower limb paralysis. Plant Mol Biol Rep 36(5–6):832–843

    Google Scholar 

  • Yadav CR (1995) Genetic evaluation and varietal improvement of grasspea in Nepal. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia. Proceedings of a regional workshop, 27–29 December 1995. Indira Gandhi Agricultural University, IPGRI Office for South Asia, Raipur, New Delhi, pp 21–27

    Google Scholar 

  • Yadav CR (1996) Genetic evaluation and varietal improvement of grasspea in Nepal. In: Lathyrus Genetic Resources in Asia: Proceedings of a Regional Workshop, 27-29 December 1995, Indira Gandhi Agricultural University, Raipur, India. IPGRI Office for South Asia, New Delhi, p 21

    Google Scholar 

  • Yadav CR, Prasad LN (1993) Genetic evaluation and varietal improvement of grass pea in Nepal. Lath Lath Newsletter 5(1)

    Google Scholar 

  • Yamamoto K, Fujiware T, Blumenreich ID (1984) Karyotypes and morphological characteristics of some species in the genus Lathyrus L. Jpn J Breed 34:273–284

    Google Scholar 

  • Yamamoto K, Fujiware T, Blumenreich L (1989) Isozymic variation and interspecific crossability in annual species of the genus Lathyrus L. In: Kaul AK, Combes D (eds) Lathyrus and lathyrism. Third World Medical Research Foundation, New York, pp 118–121

    Google Scholar 

  • Yan ZY, Spencer PS, Li ZX et al (2006) Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry 67(2):107–121

    CAS  PubMed  Google Scholar 

  • Yang HM, Zhang XY (2005) Considerations on the reintroduction of grass pea in China. Lath Lath Newsletter 4:22–26

    Google Scholar 

  • Yang T, Jiang J, Burlyaeva M et al (2014) Large-scale microsatellite development in grasspea (Lathyrus sativus L.), an orphan legume of the arid areas. BMC Plant Biol 14(1):65

    PubMed  PubMed Central  Google Scholar 

  • Yates AA, Schlicker SA, Suitor CW (1998) Dietary reference intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J Am Diet Assoc 98(6):699–706

    CAS  PubMed  Google Scholar 

  • Yunus AG (1990) Biosystematics of Lathyrus section Lathyrus with special reference to the grasspea, L. sativus L. Unpublished Ph.D. Thesis. University of Birmingham

    Google Scholar 

  • Yunus AG, Jackson MT (1991) The gene pool of the grass pea (Lathyrus sativus L). Plant Breed 106:319–328

    Google Scholar 

  • Zambre M, Chowdhury B, Kuo YH et al (2002) Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (grass pea). Plant Sci 163:1107–1112

    CAS  Google Scholar 

  • Zhang D, Li Z, Li JF (2015) Genome editing: new antiviral weapon for plants. Nat Plants 1:15146. https://doi.org/10.1038/nplants.2015.146

    Article  CAS  Google Scholar 

  • Zhang P, Du H, Wang J et al (2020) Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J 18:1384–1395. https://doi.org/10.1111/pbi.13302

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Arora RK (1995) Conservation and use of underutilized crops in Asia. In: Arora RK, Mathur PN, Riley KW et al (eds) Lathyrus genetic resources in Asia. Proceedings of a regional workshop, 27–29 December, Raipur, India, pp 91–95

    Google Scholar 

  • Zhou L, Cheng W, Hou H et al (2016) Antioxidative responses and morpho-anatomical alterations for coping with flood-induced hypoxic stress in grass pea (Lathyrus sativus L.) in comparison with pea (Pisum sativum). J Plant Growth Regul 35(3):690–700

    CAS  Google Scholar 

  • Zhu H, Choi HK, Cook DR et al (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137(4):1189–1196

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parihar, A.K., Barpete, S., Das, A., Lamichaney, A., Gupta, S. (2022). Lathyrus Breeding. In: Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. (eds) Fundamentals of Field Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-16-9257-4_26

Download citation

Publish with us

Policies and ethics