Skip to main content

Soybean Breeding

  • Chapter
  • First Online:
Fundamentals of Field Crop Breeding

Abstract

Unique confluence of oilseed, leguminous and nutraceutical properties in soybean seed has made this crop the leading oilseed, the major animal feed and a much sought-after health food of this century. Undoubtedly, sustained effort to breed soybean varieties to enhance the yield is the major objective; however, there is a tremendous scope for genetic improvement to meet the requirement of each segment of the soy industry. To begin with, the chapter briefs about the historical account of soybean across the world and the morphological phenotypes important from the point of view of soybean breeder. Subsequently, the major breeding methods employed in soybean, the genetics of the important qualitative and quantitative traits and the interventions required on the improvement of the yield components, resistance against major diseases, enhancement of oil and protein, improvement of oil quality, elimination/reduction of anti-nutritional and undesirable factors such as Kunitz trypsin inhibitor and off-flavour generating lipoxygenases are discussed. Conventional, molecular and transgenic approaches employed for achieving the breeding objectives are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe J, Xu DH, Miyano A et al (2003) Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci 43(4):1300–1304

    Google Scholar 

  • Agudamu YT, Shiraiwa T (2016) Branch development responses to planting density and yield stability in soybean cultivars. Plant Prot Sci 19:331–339

    Google Scholar 

  • Akond M, Liu S, Boney M et al (2014) Identification of quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. Am J Plant Sci 5:158–167

    CAS  Google Scholar 

  • Anderson RL (1992) Effect of steaming on soybean proteins and trypsin inhibitors. J Am Oil Chem Soc 69:1170–1176

    CAS  Google Scholar 

  • Axelrod B, Cheesbrough T, Laakso S (1981) Lipoxygenase from soybeans. Methods Enzymol 71:441–451

    CAS  Google Scholar 

  • Bandillo N, Jarquin D, Song Q et al (2015) A population structure and genome‐wide association analysis on the USDA soybean germplasm collection. Plant Genome 8:1–13

    CAS  Google Scholar 

  • Bernal-Lugo I, Castillo A, Diaz de Leon F et al (1991) Does phytic acid influence cooking rate in common beans. J Food Biochem 15:367–374

    Google Scholar 

  • Bernard RL (1972) Two genes affecting stem termination in soybean. Crop Sci 12:235–239

    Google Scholar 

  • Bernard RL, Nelson RI, Cremeens CR (1991) USDA soybean genetic collection: isoline collection. Soybean Genet Newsl 18:27–57

    Google Scholar 

  • Bhattacharyya PK, Ram HH, Kole PC (1999) Inheritance of resistance to yellow mosaic virus in interspecific crosses of soybean. Euphytica 108:157–159

    Google Scholar 

  • Bhor TJ, Chimote VP, Deshmukh MP (2015) Molecular tagging of Asiatic soybean rust resistance in exotic genotype EC 241780 reveals complementation of two genes. Plant Breed 134:70–77

    CAS  Google Scholar 

  • Bilyeu K, Palavalli P, Sleper D et al (2005) Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci 45:1830–1836

    CAS  Google Scholar 

  • Bilyeu K, Skrabisova M, Allen D et al (2018) The interaction of the soybean seed high oleic acid oil trait with other fatty acid modifications. J Am Oil Chem Soc 95:39–49

    CAS  Google Scholar 

  • Bilyeu K, Zeng P, Coello P et al (2009) Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol 146:468–477

    Google Scholar 

  • Board J (2000) Light interception efficiency and light quality affect yield compensation of soybean at low plant populations. Crop Sci 40:1285–1294

    Google Scholar 

  • Boerma HR, Cooper RL (1975) Comparison of three selection procedures for yield in soybeans. Crop Sci 15:225–229

    Google Scholar 

  • Brandon DL, Bates AH, Friedman M (1991) ELISA analysis of soybean trypsin inhibitors in processed foods. Adv Exp Med Biol 289:321–337

    CAS  PubMed  Google Scholar 

  • Bravo JJ, Fehr WR, Welke GD et al (1999) Family and line selection for elevated palmitate of soybean. Crop Sci 39:679–682

    CAS  Google Scholar 

  • Brim CA, Burton JW (1979) Recurrent selection in soybeans. II. Selection for increased percent protein in seeds. Crop Sci 19:494–498

    Google Scholar 

  • Brogin RL, Arias CAA, Vello NA et al (2004) Molecular mapping of a gene conferring resistance to soybean rust. In: VII world soybean research conference, Foz do Iguassu. 29 February-5 March 2004

    Google Scholar 

  • Bromfield KR (1984) Soybean rust monograph no. 11. American Phytopathological Society, St. Paul

    Google Scholar 

  • Bromfield KR, Hartwig EE (1980) Resistance to soybean rust and mode of inheritance. Crop Sci 20(2):254–255

    Google Scholar 

  • Bromfield KR, Melching JS (1982) Sources of specific resistance to soybean rust. Phytopatology 71:706

    Google Scholar 

  • Burton JW, Brim CA (1981) Recurrent selection in soybeans. III. Selection for increased percent oil in seeds. Crop Sci 21:31–34

    Google Scholar 

  • Burton JW, Carver BF (1993) Selection among S1 families vs. selfed half-sib or full-sib families in autogamous crops. Crop Sci 33:21–28

    Google Scholar 

  • Burton JW, Wilson RF, Brim CA (1983) Recurrent selection in soybeans. IV. Selection for increased oleic acid percentage in seed oil. Crop Sci 23:744–747

    CAS  Google Scholar 

  • Byron DF, Orf JH (1991) Comparison of three selection procedures for development of early-maturing soybean lines. Crop Sci 31:656–660

    Google Scholar 

  • Cai Y, Chen L, Liu X et al (2018) CRISPR/Cas9 mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J 16(1):176–185

    CAS  PubMed  Google Scholar 

  • Calvo ES, Kiihl RAS, Garcia A et al (2008) Two major recessive soybean genes conferring soybean rust resistance. Crop Sci 48(4):1350–1354

    Google Scholar 

  • Cao D, Takeshima R, Zhao C et al (2016) Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot 68:1873–1884

    Google Scholar 

  • Chen L, Cai Y, Liu X et al (2018) Improvement of soybean Agrobacterium-mediated transformation efficiency by adding glutamine and asparagine into the culture media. Int J Mol Sci 19(10):3039

    PubMed  PubMed Central  Google Scholar 

  • Chen LH, Pan SH (1985) Solubility and foaming properties of phytate reduced soy protein isolate. J Food Sci 42:1098–1101

    Google Scholar 

  • Chen P, Buss GR, Roane CW et al (1991) Allelism among genes for resistance to Soybean mosaic virus in strain differential soybean cultivars. Crop Sci 31:305–309

    Google Scholar 

  • Chen P, Buss GR, Tolin SA (1993) Resistance to Soybean mosaic virus conferred by two independent dominant genes in PI 486355. Heredity 84:25–28

    Google Scholar 

  • Chen P, Ma G, Buss GR et al (2001) Inheritance and allelism test of Raiden soybean for resistance to Soybean mosaic virus. J Hered 92:51–55

    CAS  PubMed  Google Scholar 

  • Chen Y, Xu Z, Zhang C et al (2014) Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and Bowman-Birk inhibitor in soymilk processing. Food Chem 154:108–116

    CAS  PubMed  Google Scholar 

  • Cheng M, Lowe BA, Spencer M et al (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Google Scholar 

  • Chitra U, Vimla V, Singh U et al (1995) Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods Hum Nutr 47:163–172

    CAS  PubMed  Google Scholar 

  • Cho EK, Goodman RM (1979) Strains of Soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology 69:467–470

    Google Scholar 

  • Christou P, McCabe DE, Swain WF (1988) Stable transformation of soybean callus by DNA coated gold particles. Plant Physiol 87:671–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung J, Babka H, Graef G et al (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067

    CAS  Google Scholar 

  • Cober ER, Molnar SJ, Charette M et al (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527

    Google Scholar 

  • Cober ER, Voldeng HD (2000) Developing high-protein, high-yield soybean populations and lines. Crop Sci 40:39–42

    Google Scholar 

  • Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701

    Google Scholar 

  • Cooper RL (1990) Modified early generation testing procedure for yield selection in soybean. Crop Sci 30:417–419

    Google Scholar 

  • Cregan PB, Jarvik T, Bush AL et al (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Dang W, Wei ZM (2007) An optimized Agrobacterium mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173:381–389

    CAS  Google Scholar 

  • da Silva MP (2018) Genetic and phytopathological studies on charcoal rot resistance in soybean [Glycine max (L) Merr.]. Theses and dissertations. 2654. http://scholarworks.uark.edu/etd/2654

  • Davies CS, Nielsen NC (1986) Genetic analysis of a null-allele for lipoxygenase-2 in soybean. Crop Sci 26:460–463

    Google Scholar 

  • Davies CS, Nielsen SS, Nielsen NC (1987) Flavor improvement of soybean preparations by genetic removal of lipoxygenase-2. J Am Oil Chem Soc 64(10):1428–1433

    CAS  Google Scholar 

  • De Moraes RMA, Soares TCB, Colombo LR et al (2006) Assisted selection by specific DNA markers for genetic elimination of the kunitz trypsin inhibitor and lectin in soybean seeds. Euphytica 149:221–226

    Google Scholar 

  • De Souza RJ, Mente A, Maroleanu A et al (2015) Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. Br Med J 351:39–78

    Google Scholar 

  • Degago Y, Caviness CE (1987) Seed yield of soybean bulk populations grown for 10 to 18 years in two environments. Crop Sci 27:207–210

    Google Scholar 

  • Di R, Purcell V, Collins GB et al (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15:746–750

    CAS  PubMed  Google Scholar 

  • Diers B, Keim P, Fehr W et al (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83:608–612

    CAS  PubMed  Google Scholar 

  • Dinkins RD, Reddy MSS, Meurer CA et al (2001) Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cell Dev Biol Plant 37:742–747

    CAS  Google Scholar 

  • Domingo WE (1945) Inheritance of number of seeds per pod and leaXet shape in the soybean. J Agric Res 70:251–226

    Google Scholar 

  • Dong Y, Yang X, Liu J et al (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 5:3352

    PubMed  Google Scholar 

  • Falco SC, Guida T, Locke M et al (1995) Transgenic canola and soybean seeds with increased lysine. Biotechnology 13:577–582

    CAS  PubMed  Google Scholar 

  • Fang C, Li C, Li W et al (2014) Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J 77:700–712

    CAS  PubMed  Google Scholar 

  • Flores T, Karpova O, Su X et al (2008) Silencing of the GmFAD3 gene by siRNA leads to low a-linolenic acids (18:3) of fad3- mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17:839–850

    CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2003) Entity Compliance Guide: trans fatty acids in nutrition labeling, nutrient content claims, and health claims. Fed Regist 68:41433–41506

    Google Scholar 

  • Food Safety and Standards Authority of India (2018) Freedom from trans-fats by 2022. https://www.fssai.gov.in/home/Press-Releases

    Google Scholar 

  • Forbes RM, Erdman JW, Parker HM et al (1983) Bioavailability of zinc in coagulated soy protein (tofu) to rats and effect of dietary calcium at a constant phytate:zinc ratio. J Nutr 113:205–210

    CAS  PubMed  Google Scholar 

  • Fu S, Zhan Y, Zhi H et al (2006) Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 128:63–69

    CAS  PubMed  Google Scholar 

  • Funatsuki H, Suzuki M, Hirose A et al (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc Natl Acad Sci U S A 111:17797–17802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furutani N, Hidaka S, Shizukawa Y et al (2006) Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breed Sci 56:119–124

    CAS  Google Scholar 

  • Fushimi T, Masuda R (2001) 2-acetyl-1-pyrroline concentration of the vegetable soybean. In: Lumpkin T, Shanmugasundaram S (eds) Proceeding of the 2nd international vegetable soybean conference. Washington State University, Pullman, p 39

    Google Scholar 

  • Gavioli EA (2013) Explanation for the rise of soybean in Brazil. IntechOpen, London. DOI: 10.577215678

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium and plant transformation: the biology behind the “genejockeying” tool. Microbiol Mol Biol Rev 67:16–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerde JA, White PJ (2008) Lipids. In: Johnson LA, White PJ, Galloway R (eds) Soybeans: chemistry, production, processing, and utilization. AOCS Press, Urbana, pp 193–227

    Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963

    CAS  PubMed  Google Scholar 

  • Gillman JD, Pantalone VR, Bilyeu K (2009) The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome 2:179–190

    CAS  Google Scholar 

  • Godoy C (2009) Changes in performance of soybean rust fungicides over years and new management strategies adopted in brazil. National Soybean Rust Symposium, New Orleans

    Google Scholar 

  • Goulden CH (1939) Problems in plant selection. In: Proceedings of the 7th international genetics congress, Edinburgh, Scotland, pp 132–133

    Google Scholar 

  • Grafus JE (1965) Shortcuts in plant breeding. Crop Sci 5:377. Hayes HK, Immer FR, Smith DC (1955) Methods of Plant Breeding. McGraw-Hill, New York

    Google Scholar 

  • Guiamet JJ, Schwartz E, Pichersky E et al (1991) Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol 96:227–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunduz I, Buss GR, Ma G et al (2000) Genetic analysis of resistance to Soybean mosaic virus in OX670 and Harosoy soybean. Crop Sci 41:1785–1791

    Google Scholar 

  • Guo DQ, Zhi HJ, Wang YW et al (2005) Identification and distribution of strains of Soybean mosaic virus in middle and northern of Huang Huai region of China. Soybean Sci 27:64–68

    Google Scholar 

  • Hajika M, Igita K, Kitamura K (1991) A line lacking all the seed lipoxygenase isozymes in soybean [Glycine max (L.) Merrill] induced by gamma-ray irradiation. Jpn J Breed 41:507–509

    Google Scholar 

  • Hajika M, Kitamura K, Igita K et al (1992) Genetic relationships among the genes for lipoxygenase-1, -2 and -3 isozymes in soybean [Glycine max (L.) Merrill] seed. Jpn J Breed 42:787–792

    Google Scholar 

  • Hajimorad MR, Hill JH (2001) Rsv1-mediated resistance against Soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. Mol Plant Microbe Interact 14:587–598

    CAS  PubMed  Google Scholar 

  • Han YP, Zhao X, Liu DY et al (2016) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209:871–884

    CAS  PubMed  Google Scholar 

  • Harshavardhan D, Shantha B, Rani TS et al (2003) Simple and economical assay systems for evaluation of phosphinothricin resistant transgenics of sorghum, Sorghum bicolor. (L.) Moench., and pearl millet, Pennisetum glaucum (L.) R. Br. Indian J Exp Biol 41:141–148

    CAS  PubMed  Google Scholar 

  • Hartwig EE (1986) Identification of a 4th major gene conferring resistance to soybean rust. Crop Sci 26(6):1135–1136

    Google Scholar 

  • Haun W, Coffman A, Clasen BM et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    CAS  PubMed  Google Scholar 

  • Hayes AJ, Jeong SC, Gore MA et al (2004) Recombination within a nucleotide-bindingsite/leucine-rich-repeat gene cluster produces new variants conditioning resistance to Soybean mosaic virus in soybeans. Genetics 166:493–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes AJ, Ma G, Buss GR et al (2000) Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of Soybean mosaic virus. Crop Sci 40:1434–1437

    CAS  Google Scholar 

  • Hennings P (1903) Some new Japanese Uredinales. Hedwigia (Suppl) 4:107–108

    Google Scholar 

  • Hildebrand DF, Hymowitz T (1982) Inheritance of lipoxygenase-1 activity in soybean seeds. Crop Sci 22:851–853

    CAS  Google Scholar 

  • Hill JH, Whitham SA (2014) Control of virus diseases in soybeans. Adv Virus Res 90:355–390

    PubMed  Google Scholar 

  • Hinchee MA, Conner-Ward DV, Newell CA (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat Biotechnol 6(8):915–922

    CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Kerr PS et al (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype in soybean seeds. Plant Physiol 128:650–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    CAS  Google Scholar 

  • Hwang EY, Song Q, Jia G et al (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1

    PubMed  PubMed Central  Google Scholar 

  • Hymowitz T (1973) Electrophoretic analysis of SBTIA2 in the USDA soybean germplasm collection. Crop Sci 13:420–421

    Google Scholar 

  • Hyten DL, Hartman GL, Nelson RL et al (2007) Map location of the Rpp1 locus that confers resistance to soybean rust in soybean. Crop Sci 47(2):837–840

    CAS  Google Scholar 

  • Ilut DC, Lipka AE, Jeong N et al (2016) Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. Theor Appl Genet 129(3):453–468

    CAS  PubMed  Google Scholar 

  • Jeong N, Moon JK, Kim HS et al (2011) Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet 122(5):865–874

    PubMed  Google Scholar 

  • Jeong SC, Kristipati S, Hayes AJ et al (2002) Genetic and sequence analysis of markers tightly linked to the Soybean mosaic virus resistance gene Rsv 3. Crop Sci 42:265–270

    CAS  PubMed  Google Scholar 

  • Jones PMB, Boulter D (1983) The cause of reduced cooking rate in Phaseolus vulgaris following adverse storage conditions. J Food Sci 48:623–627

    Google Scholar 

  • Juwattanasomran R, Somta P, Chankaew S et al (2011) A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541

    CAS  PubMed  Google Scholar 

  • Juwattanasomran R, Somta P, Kaga A et al (2012) Identification of a new fragrance allele in soybean and development of its functional marker. Mol Breed 29:13–21

    CAS  Google Scholar 

  • Kato S, Sayama T, Fujii K et al (2014) A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet 127(6):1365–1374. https://doi.org/10.1007/s00122-014-2304-0

    Article  CAS  PubMed  Google Scholar 

  • Kenworthy WJ, Brim CA (1979) Recurrent selection in soybeans. I Seed yield. Crop Sci 19:315–318

    Google Scholar 

  • Khanh TD, Anh TQ, Buu BC et al (2013) Applying molecular breeding to improve soybean rust resistance in Vietnamese elite soybean. Am J Plant Sci 4(1):1–6

    Google Scholar 

  • Kiihl RAS, Hartwig EE (1979) Inheritance of reaction to Soybean mosaic virus in soybean. Crop Sci 19:372–375

    Google Scholar 

  • Kim HJ, Cho HS, Pak JH et al (2018) Confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean. Mol Cells 41(5):413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Schultz S, Nelson RL et al (2016) Identification and fine mapping of a soybean seed protein QTL from PI 407788A on chromosome 15. Crop Sci 56:219–225

    CAS  Google Scholar 

  • Kim MS, Park MJ, Jeong WH et al (2006) SSR markers tightly linked to the ti locus in soybean [Glycine max (L.) Merr.]. Euphytica 152:361–366

    CAS  Google Scholar 

  • Kitamura K (1991) Spontaneous and induced mutations of seed proteins in soybean (Glycine max L. Merrill). Gamma Field Symp 30:61–69

    Google Scholar 

  • Kitamura K, Davies CS, Kaizuma N et al (1983) Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Sci 23:924–927

    CAS  Google Scholar 

  • Kitamura K, Kumagai T, Kikuchi A (1985) Inheritance of lipoxygenase-2 and genetic relationships among genes for lipoxygenase-1, -2 and -3 isozymes in soybean seeds. Jpn J Breed 35:413–420

    CAS  Google Scholar 

  • Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    PubMed  Google Scholar 

  • Ko TS, Korban SS (2004) Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L.) Merrill]. In Vitro Cell Dev Biol Plant 40:552–558

    CAS  Google Scholar 

  • Kohzuma K, Sato Y, Ito H et al (2017) The non-Mendelian green cotyledon gene in soybean encodes a small subunit of photosystem II. Plant Physiol 173:2138–2147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong F, Liu B, Xia Z et al (2010) Two coordinately regulated homologues of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong F, Nan H, Cao D et al (2014) A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535

    Google Scholar 

  • Kumar V, Rani A, Anshu AK et al (2021) Marker-assisted stacking of null Kunitz trypsin inhibitor and off-flavour generating lipoxygenase-2 in soybean. J Agric Sci 159:272–280

    CAS  Google Scholar 

  • Kumar V, Rani A, Billore SD et al (2006c) Physico-chemical properties of immature pods of Japanese cultivars grown under Indian conditions. Int J Food Prop 9:51–59

    CAS  Google Scholar 

  • Kumar V, Rani A, Husain SM et al (2010a) NRC106 (IC0582899, INGR10052) and IC210 (IC0582900; INGR10053): soybean (Glycine max) germplasm lines with high oleic acid content and early maturity. Indian J Plant Genet Res 24(1):121

    Google Scholar 

  • Kumar V, Rani A, Chauhan GS (2010c) Nutritional value of soybean. In: Singh G (ed) Soybean: the botany, production and uses. CAB International, Wallingford, pp 375–403

    Google Scholar 

  • Kumar V, Rani A, Dixit AK et al (2010b) A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical-scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Res Int 43(1):323–328

    CAS  Google Scholar 

  • Kumar V, Rani A, Goyal L et al (2011a) Evaluation of vegetable-type soybean for sucrose, taste-related amino acids and isoflavones content. Int J Food Prop 14:1142–1151

    CAS  Google Scholar 

  • Kumar V, Rani A, Joshi OP (2004) Fatty acid profile of released cultivars of Indian soybean: Identification of comparatively low linolenic and high oleic acid cultivars. Indian J Agric Sci 74(7):388–391

    Google Scholar 

  • Kumar V, Rani A, Mittal P et al (2019) Kunitz trypsin inhibitor in soybean: Contribution to total trypsin inhibitor activity as a function of genotype and fate during processing. J Food Meas Charact 13(2):1593–1590

    Google Scholar 

  • Kumar V, Rani A, Mourya V et al (2011b) Marker Assisted Selection for development of kunitz trypsin inhibitor free soybean varieties: I: parental polymorphism survey using SSR markers. Indian J Genet Plant Breed 71(4):372–376

    CAS  Google Scholar 

  • Kumar V, Rani A, Mourya V et al (2012) Parental polymorphism survey of popular soybean varieties in combination with the source of null alleles of kunitz trypsin inhibitor and lipoxygenase-2 using linked SSR markers. Soybean Res Develop 9:72–78

    Google Scholar 

  • Kumar V, Rani A, Pandey V et al (2006a) Compositional traits of soybean seeds as influenced by planting date. Exp Agric 42:19–28

    Google Scholar 

  • Kumar V, Rani A, Rawal R (2013b) Deployment of gene specific marker in development of kunitz trypsin inhibitor free soybean genotypes. Indian J Exp Biol 51:1125–1129

    CAS  PubMed  Google Scholar 

  • Kumar V, Rani A, Rawal R et al (2010a) NRC106 (IC0582899, INGR10052) and IC210 (IC0582900; INGR10053): soybean (Glycine max) germplasm lines with high oleic acid content and early maturity. Indian J Plant Genet Res 24(1):121

    Google Scholar 

  • Kumar V, Rani A, Rawal R et al (2013a) Lipoxygenase-2-free Indian soybean (Glycine max L.) genotypes. Curr Sci 104(5):586–587

    Google Scholar 

  • Kumar V, Rani A, Rawal R et al (2015) Marker assisted accelerated introgression of null allele of Kunitz trypsin inhibitor in soybean. Breed Sci 65:447–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Rani A, Shuaib M et al (2018) Comparative assessment of trypsin inhibitor vis-à-vis kunitz trypsin inhibitor and Bowman-Birk inhibitor activities in soybean. Food Anal Methods 11(9):2431–2437

    Google Scholar 

  • Kumar V, Rani A, Solanki S et al (2006b) Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J Food Compos Anal 19:188–195

    CAS  Google Scholar 

  • Kumar V, Rani A, Tayalkar T et al (2022) Genetic elimination of lipoxygenase-2 improves sprouting and tocopherols, and removal of Kunitz trypsin inhibitor enhances in vitro protein digestibility in soybean (Glycine max). Plant Breed 141(1):63–70

    CAS  Google Scholar 

  • Kumar V, Rani A, Tindwani C et al (2003) Lipoxygenases and trypsin inhibitor activity as influenced by growing location. Food Chem 83:79–83

    CAS  Google Scholar 

  • Kumar V, Rani A, Tiwari SP (2001) Comparative activities of trypsin inhibitor among released cultivars of soybean. Indian J Nutr Diet 38:437–440

    Google Scholar 

  • Lee K, Yi BY, Kim KH et al (2011) Development of efficient transformation protocol for soybean (Glycine max L.) and characterization of transgene expression after Agrobacterium-mediated gene transfer. J Korean Soc Appl Biol Chem 54(1):37–45

    CAS  Google Scholar 

  • Lenis JM, Gillman JD, Lee JD et al (2010) Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theor Appl Genet 120:1139–1149

    CAS  PubMed  Google Scholar 

  • Li D, Zhao X, Han Y et al (2019) Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics 111:90–95

    CAS  PubMed  Google Scholar 

  • Li HY, Zhu YM, Chen Q et al (2004) Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biol Plant 48(3):367–374

    CAS  Google Scholar 

  • Li K, Yang QH, Zhi HJ et al (2010) Identification and distribution of Soybean mosaic virus strains in southern China. Plant Dis 94:351–357

    CAS  PubMed  Google Scholar 

  • Li L, Smith JR, Ray JD et al (2012) Identification of a new soybean rust resistance gene in PI 567102B. Theor Appl Genet 125(1):133–142

    CAS  PubMed  Google Scholar 

  • Li S, Cong Y, Liu Y et al (2017a) Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8:246

    PubMed  PubMed Central  Google Scholar 

  • Li X, Fang C, Xu M et al (2017b) Quantitative trait locus mapping of soybean maturity gene E6. Crop Sci 57:1–8

    Google Scholar 

  • Li Y, Liu C, Wang N et al (2021) Fine mapping of A QTL LOCUS (QNFSPO7-1) and analysis of candidate genes for four seeded pods in soybean. Mol Breed 41:71

    PubMed  PubMed Central  Google Scholar 

  • Liener IE (1994) Implications of anti-nutritional components in soybean foods. Crit Rev Food Sci Nutr 34:31–67

    CAS  PubMed  Google Scholar 

  • Lim HS, Ko TS, Lambert KN et al (2005) Soybean mosaic virus helper component-protease enhances somatic embryo production and stabilizes transgene expression in soybean. Plant Physiol Biochem 43:1014–1021

    CAS  PubMed  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H et al (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180(2):995–1007. https://doi.org/10.1534/genetics.108.092742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Yan Y, Fujita Y et al (2018) Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci 68:442–448. https://doi.org/10.1270/jsbbs.17127

  • Liu N, Li M, Hu X et al (2017) Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics 18(1):466

    PubMed  PubMed Central  Google Scholar 

  • Liu SJ, Wei ZM, Huang JQ (2007) The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep 27(3):489–498

    PubMed  Google Scholar 

  • Liu Y, Li R, Li Z (2010) Effects of cultivation pattern and density on canopy structure and yield of soybean. Soybean Sci 29(5):796–795

    Google Scholar 

  • Lu SL (1978) Study on the origin region of cultivated soybean in China. Sci Agric Sin 90:90–94

    Google Scholar 

  • Luedders VD, Duclos LA, Matson AL (1973) Bulk, pedigree, and early generation testing breeding methods compared in soybeans. Crop Sci 13:363–364

    Google Scholar 

  • Ma FF, Wu M, Liu YN et al (2017) Molecular characterization of NBS–LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the Soybean mosaic virus. Theor Appl Genet 13:253–265

    Google Scholar 

  • Ma G, Chen P, Buss GR et al (1995) Genetic characteristics of two genes for resistance Soybean mosaic virus in PI486355 soybean. Theor Appl Genet 91:907–914

    CAS  PubMed  Google Scholar 

  • Mandal B, Varma A, Malathi VG (1997) Systemic infection of Vigna mungo using the cloned DNAs of the blackgram isolate Mungbean yellow mosaic geminivirus through agroinoculation and transmission of the progeny virus by whiteflies. J Phytopathol 145:505–510

    Google Scholar 

  • Maroof MS, Glover NM, Biyashev RM et al (2009) Genetic basis of the low-phytate trait in the soybean line CX1834. Crop Sci 49(1):69–76

    CAS  Google Scholar 

  • Maroof S, Tucker MA, Jeong SC et al (2008) Pyramiding of Soybean mosaic virus resistance genes by marker-assisted selection. Crop Sci 48:517–526

    CAS  Google Scholar 

  • Maroof S, Tucker MA, Skoneczka DM et al (2010) Fine mapping and candidate gene discovery of the Soybean mosaic virus resistance gene, Rsv4. Plant Genome 3:14–22

    Google Scholar 

  • Marra BM, Souza DS, Aguiar JN et al (2009) Protective effects of a cysteine proteinase propeptide expressed in transgenic soybean roots. Peptides 30(5):825–831

    CAS  PubMed  Google Scholar 

  • Matzk A, Mantell S, Schiemann J (1996) Localization of persisting Agrobacterium in transgenic tobacco plants. Mol Plant-Microbe Interact 9:373–381

    CAS  Google Scholar 

  • Maughan PJ, Philip R, Cho M-J et al (1999) Biolistic transformation, expression, and inheritance of bovine β-casein in soybean (Glycine max). In Vitro Cell Dev Biol Plant 35:334–349

    Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Nat Biotechnol 6(8):923–926

    Google Scholar 

  • Mclean RJ, Byth DE (1980) Inheritance resistance to rust (Phakopsorapachyrhizi) in soybeans rust. J Agric Res 31(5):951–956

    Google Scholar 

  • Messina MJ, Persky V, Setchell KD (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21(2):113–131

    CAS  PubMed  Google Scholar 

  • Miklos JA, Alibhai MF, Bledig SA et al (2007) Characterization of soybean exhibiting high expression of a synthetic bacillus thuringiensis cry1a transgene that confers a high degree of resistance to lepidopteran pests. Crop Sci 47:148–157

    CAS  Google Scholar 

  • Miles MR, Morel W, Ray JD et al (2008) Adult plant evaluation of soybean accessions for resistance to Phakopsora pachyrhizi in the field and greenhouse in Paraguay. Plant Dis 92(1):96–105

    CAS  PubMed  Google Scholar 

  • Molnar SJ, Rai S, Charette M et al (2003) Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome 46:1024–1036

    CAS  PubMed  Google Scholar 

  • Monteros MJ, Missaoui AM, Phillips DV et al (2007) Mapping and confirmation of the ‘hyuuga’ red-brown lesion resistance gene for Asian soybean rust. Crop Sci 47(8):829–836

    CAS  Google Scholar 

  • Morinaga T, Ikegami M, Miura K (1990) Physical mapping and molecular cloning of mungbean yellow mosaic virus DNA. Intervirology 31:50–56

    CAS  PubMed  Google Scholar 

  • Nariani TK (1960) Yellow mosaic of mung (Phaseolus aureus L.). Indian Phytopathol 13:24–29

    Google Scholar 

  • Nene YL (1972) A survey of the viral diseases of pulse crops in India. Indian J Res Bull 4:191

    Google Scholar 

  • Nene YL (1973) Viral disease of some warm weather crop plants of India. Plant Dis Rep 57:463–467

    Google Scholar 

  • Nichols D, Glover K, Carlson S et al (2006) Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci 46:834–839

    Google Scholar 

  • Ning H, Yuan J, Dong Q et al (2018) Identification of QTLs related to the vertical distribution and seed-set of pod number in soybean [Glycine max (L.) Merri]. PLoS One 13(4):e0195830. https://doi.org/10.1371/journal.pone.0195830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Tang W, Huang W et al (2008) RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol 8:100–106

    PubMed  PubMed Central  Google Scholar 

  • Nordentoft I, Jeppesen PB, Hong J et al (2008) Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic kkAy-mice after feeding with a soybean protein rich diet high in isoflavones content. J Agric Food Chem 56:4377–4385

    CAS  PubMed  Google Scholar 

  • Nunes A, Vianna G, Cuneo F et al (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132

    CAS  PubMed  Google Scholar 

  • O’Dell BL (1982) Dietary factors that affect biological availability of trace elements. Ann NY Acad Sci 199:70–81

    Google Scholar 

  • Olhoft PM, Bernal LM, Grist LB et al (2007) A novel Agrobacterium rhizogenes mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cell Dev Biol Plant 43(6):536–549

    CAS  Google Scholar 

  • Oliveira MIP, Piovesan ND, José IC et al (2007) Protein, oil and isoflavones content in lipoxygenase and Kunitz trypsin inhibitor-deficient soybean seeds. Chromatographia 66:521–527

    CAS  Google Scholar 

  • Orf JH, Diers BW, Boerma HR (2004) Genetic improvement: conventional and molecular-based strategies. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. ASSA, CSSA, and SSSA, Madison, pp 417–450

    Google Scholar 

  • Orf JH, Hymowitz T (1979) Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci 19:107–109

    CAS  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X (1995) Development, identification, and characterization of a glyphosate tolerant soybean line. Crop Sci 35:1451–1461

    CAS  Google Scholar 

  • Panthee D, Pantalone V, West D et al (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci 45:2015–2022

    CAS  Google Scholar 

  • Pathan SM, Vuong T, Clark K et al (2013) Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci 53:765–774

    CAS  Google Scholar 

  • Patil G, Mian R, Vuong T et al (2017) Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor Appl Genet 130:1975–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peric V, Srebric M, Dragicevic V et al (2014) Development of soybean varieties with specific nutritional composition of grain. J Hyg Eng Des 8:174–177

    Google Scholar 

  • Pham AT, Lee JD, Shannon JG et al (2011) A novel FAD2-1a allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor Appl Genet 123(5):793–802

    CAS  PubMed  Google Scholar 

  • Pham TA, Hill CB, Miles MR et al (2010) Evaluation of soybean for resistance to soybean rust in Vietnam. Field Crop Res 117(1):131–138

    Google Scholar 

  • Potter SM, Baum JA, Teng H et al (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68(6):1375–1379

    Google Scholar 

  • Pretorius ZA, Kloppers FJ, Frederick RD (2001) First report of soybean rust in South Africa. Plant Dis 85:1288

    CAS  PubMed  Google Scholar 

  • Raboy V (2001) Seeds for a better future: “low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    CAS  PubMed  Google Scholar 

  • Raeber JG, Weber CR (1953) Effectiveness of selection for yield in soybean crosses by bulk and pedigree systems of breeding. Agron J 45:362–366

    Google Scholar 

  • Rani A, Kumar V (2018) ICAR-IISR develops speciality soybean. ICAR News 24(2):21

    Google Scholar 

  • Rani A, Kumar V, Bhatia VS (2020) Economical speed breeding developed in soybean. ICAR News 26(1):21

    Google Scholar 

  • Rani A, Kumar V, Gill BS et al (2017) Linkage mapping of Mungbean yellow mosaic India virus (MYMIV) resistance gene in soybean. Breed Sci 67:95–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rani A, Kumar V, Gill BS et al (2018) Mapping of duplicate dominant genes for Mungbean yellow mosaic India virus resistance in Glycine soja. Crop Sci 58:1566–1574

    Google Scholar 

  • Rani A, Kumar V, Husain SM et al (2010) NRC101 (IC0582901; INGR10054) and NRC102 (IC582902; INGR10055): soybean (Glycine max) germplasm lines free from kunitz trypsin inhibitor polypeptide. Indian J Plant Genet Res 24(1):122

    Google Scholar 

  • Rani A, Kumar V, Mourya V et al (2011) Validation of SSR markers linked to null kunitz trypsin inhibitor allele in Indian soybean [Glycine max (L.) Merr.] population. J Plant Biochem Biotechnol 20(2):258–261

    Google Scholar 

  • Rani A, Kumar V, Mourya V et al (2019) Genomic regions governing the biosynthesis of unsaturated fatty acids in recombinant inbred lines of soybean raised across multiple growing years. J Am Oil Chem Soc 96:1337–1346

    CAS  Google Scholar 

  • Rani A, Kumar V, Rawal R (2013) Identification of simple sequence repeat markers linked to lipoxygenase-1 gene in soybean. J Plant Biochem Biotechnol 22(4):488–491

    CAS  Google Scholar 

  • Rani A, Kumar V, Tayalkar T et al (2021) Genomic regions controlling seed weight, water absorption ratio, sprout yield, and storage protein fractions in soybean. J Crop Improv 35(3):346–360

    CAS  Google Scholar 

  • Rani A, Verma K, Saini R (2012) Recovery of fertile transgenic plants via Agrobacterium tumefaciens-mediated transformation in Indian soybean (Glycine max L. Merrill) cultivar. Indian J Genet Plant Breed 72(3):325–331

    CAS  Google Scholar 

  • Ratnayake WN, Swist E, Zoka R et al (2014) Mandatory trans-fat labeling regulations and nationwide product reformulations to reduce trans fatty acid content in foods contributed to lowered concentrations of trans fat in Canadian women's breast milk samples collected in 2009-2011. Am J Clin Nutr 100(4):1036–1040

    CAS  PubMed  Google Scholar 

  • Rawal R, Kumar V, Rani A et al (2020) Genetic elimination of off-flavour generating lipoxygenase-2 gene of soybean through marker assisted backcrossing and its effect on seed longevity. Plant Breed Biotechnol 8(2):162–173

    Google Scholar 

  • Redekar NR, Clevinger EM, Laskar MA et al (2016) Candidate gene sequence analyses toward identifying Rsv3-type resistance to Soybean mosaic virus. Plant Genome 9(2):1–12

    CAS  Google Scholar 

  • Reinprecht Y, Luk Labey SY, Larsen J et al (2009) Molecular basis of the low linolenic acid trait in soybean EMS mutant line RG10. Plant Breed 128:253–258

    CAS  Google Scholar 

  • Reinprecht Y, Luk-Labey S-Y, Yu K et al (2011) Molecular basis of seed lipoxygenase null traits in soybean line OX948. Theor Appl Genet 122:1247–1264

    CAS  PubMed  Google Scholar 

  • Rodrigues J, Miranda F, Piovesan N et al (2016) QTL mapping for yield components and agronomic traits in a Brazilian soybean population. Crop Breed Appl Biotechnol 16(4):265–273

    Google Scholar 

  • Rose JL, Butler DG, Ryley MJ (1992) Yield improvement in soybeans using recurrent selection. Aust J Agr Res 43:135–144

    Google Scholar 

  • Rossi RL (2003) First report of Phakopsorapachyrhizi, the causal organism of soybean rust in the province of Misiones, Argentina. Plant Dis 87:102

    CAS  PubMed  Google Scholar 

  • Samanfar B, Molnar SJ, Charette M et al (2017) Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet 130:377–390

    CAS  PubMed  Google Scholar 

  • Schaefer MJ, Love J (1992) Relationships between soybean components and tofu texture. J Food Qual 15:53–66

    CAS  Google Scholar 

  • Schlueter JA, Sanders IFV, Deshpande S et al (2007) The FAD2 gene family of soybean. Crop Sci 47:12–26

    Google Scholar 

  • Sebolt A, Shoemaker R, Diers B (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444

    CAS  Google Scholar 

  • Sedivy E, Wu F, Hanzawa Y (2017) Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol 214(2):539–553

    PubMed  Google Scholar 

  • Senda M, Masuta C, Ohnishi S et al (2004) Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16(4):807–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugasundaram S, Cheng ST, Huang MT et al (1991) Quality requirement and improvement of vegetable soybean. In: Shanmugasundaram S (ed) Vegetable soybean: research needs for production and quality improvement. Asian Vegetable Research and Development Center, Taiwan, pp 30–42

    Google Scholar 

  • Shi A, Chen P, Li D et al (2009) Pyramiding multiple genes for resistance to Soybean mosaic virus using molecular markers. Mol Breed 23:113–124

    CAS  Google Scholar 

  • Shi A, Chen P, Li DX et al (2008) Genetic confirmation of 2 independent genes for resistance to Soybean mosaic virus in J05 soybean using SSR markers. J Hered 99(6):598–603

    CAS  PubMed  Google Scholar 

  • Shi A, Chen P, Vierling R et al (2011) Multiplex single nucleotide polymorphism (SNP) assay for detection of Soybean mosaic virus resistance genes in soybean. Theor Appl Genet 122:445–457

    CAS  PubMed  Google Scholar 

  • Shim S (2019) GmBRC1 is a candidate gene for branching in soybean (Glycine max). Int J Mol Sci 20:135

    PubMed  PubMed Central  Google Scholar 

  • Shin JH, Van K, Do Kim K, Lee YH, Jun TH, Lee SH (2012) Molecular sequence variations of the lipoxygenase-2 gene in soybean. Theor Appl Genet 124(4):613–622

    CAS  PubMed  Google Scholar 

  • Shukla S, Rani A, Jain M et al (2020) Genotypic variability in soybean [Glycine max (L.) Merrill] through agrobacterium-mediated transformation. Plant Tissue Cult Biotechnol 30(2):231–242

    Google Scholar 

  • Singh BB, Mallick AS (1978) Inheritance of resistance to yellow mosaic in soybean. Indian J Genet Plant Breed 38:258–261

    Google Scholar 

  • Solomon NW (1982) Biological availability of zinc in humans. Am J Clin Nutr 35:1048–1075

    Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonah H, O'Donoughue L, Cober E et al (2015) Identification of loci governing eight agronomic traits using a GBS‐GWAS approach and validation by QTL mapping in soybean. Plant Biotechnol J 3:211–221

    Google Scholar 

  • Stewart CN, Adang MJ, All JN et al (1996) Genetic transformation, recovery, and characterization of soybean (Glycine max [L] Merrill) transgenic for a synthetic Bacillus thuringiensis CRY IA(c) gene. Plant Physiol 112:121–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suh SJ, Bowman BC, Jeong N et al (2011) The Rsv3 locus conferring resistance to Soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes. Plant Genome 4:55–64

    Google Scholar 

  • Sumarno, Fehr WR (1982) Response to recurrent selection for yield in soybeans. Crop Sci 22:295–299

    Google Scholar 

  • Sun H, Jia Z, Cao D et al (2011) GmFT2a, a soybean homologue of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One 6(12):e29238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terao H (1918) Maternal inheritance in the soybean. Am Nat 52:51–56

    Google Scholar 

  • Thapa R, Colon MC, Quaye CA et al (2018) New alleles of FAD3A lower the linolenic acid content of soybean seeds. Crop Sci 58(2):713–718

    CAS  Google Scholar 

  • Tinius CN, Burton JW, Carter TE Jr (1991) Recurrent selection for seed size in soybean. I. Response to selection in replicate populations. Crop Sci 31:1137–1141

    Google Scholar 

  • Torrie JH (1958) A comparison of the pedigree and bulk methods of breeding soybeans. Agron J 50:198–200

    Google Scholar 

  • Tougou M, Furutani N, Yamagishi N et al (2006) Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus. Plant Cell Rep 25:1213–1218

    CAS  PubMed  Google Scholar 

  • Trick NH, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Trans Res 6:329–336

    CAS  Google Scholar 

  • United State Department of Agriculture (2019) Oilseeds: world market and trade. https://apps.fas.usda.gov/psdonline/circulars/oilseeds

    Google Scholar 

  • United States Department of Agriculture (2021) Oilseeds: world market and trade. https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/gh93j0912/9s162713p/oilseeds.pdf

  • Vaintraub IA, Bulmaga VP (1991) Effect of phytate on the in vitro activity of digestive enzymes. J Food Sci 50:1139–1142

    Google Scholar 

  • Varma A, Dhar AK, Mandal B (1992) MYMV transmission and control in India. In: Green SK, Kim D (eds) Mungbean yellow mosaic disease. Proceedings of an International Workshop, Bangkok, Thailand. 2–3 July 1991. Asian Veg. Res. Dev. Ctr, Shanhua, pp 8–27

    Google Scholar 

  • Verma K, Saini R, Rani A (2014) Recent advances in the regeneration and genetic transformation of soybean. J Innov Biol 1(1):15–26

    Google Scholar 

  • Walker DR, Scaboo AM, Pantalone VR et al (2006) Genetic mapping of loci associated with seed phytic acid content in CX1834-1-2 soybean. Crop Sci 46:390–397

    CAS  Google Scholar 

  • Wang D, Ma Y, Yang Y et al (2011) Fine mapping and analyses of R (SC8) resistance candidate genes to Soybean mosaic virus in soybean. Theor Appl Genet 122:555–565

    PubMed  Google Scholar 

  • Wang GL, Xu Y (2008) Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA Interference. Plant Cell Rep 27:1177–1184

    PubMed  Google Scholar 

  • Wang J, Chen P, Wang D et al (2015) Identification and mapping of stable QTL for protein content in soybean seeds. Mol Breed 35:1–10

    Google Scholar 

  • Wang TC, Hartman GL (1992) Epidemiology of soybean rust and breeding for host resistance. Plant Prot Bull (Taiwan) 34:109–124

    Google Scholar 

  • Wang WH, Takano T, Shibata D et al (1994) Molecular basis of a null mutation in soybean lipoxygenase 2: substitution of glutamine for an iron-ligand histidine. Proc Natl Acad Sci U S A 91:5828–5832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XQ, Gai JY, Pu ZQ (2003) Classification and distribution of strains of Soybean mosaic virus in middle and lower Huanghuai and Changjiang river valleys. Soybean Sci 22:102–107

    Google Scholar 

  • Wang XY, Eggenberger AL, Nutter FW et al (2001) Pathogenderived transgenic resistance to soybean mosaic virus in soybean. Mol Breed 8:119–127

    CAS  Google Scholar 

  • Wang Y, Wu C, Zhang X et al (2008) Effects of soybean major maturity genes under different photoperiods. Acta Agron Sin 34:1160–1168

    CAS  Google Scholar 

  • Wang YJ, Dongfang Y, Wang XQ et al (2004) Mapping of five genes resistant to SMV strains in soybean. Acta Genet Sin 31:87–90

    CAS  PubMed  Google Scholar 

  • Warrington C, Abdel‐Haleem H, Hyten D et al (2015) QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theor Appl Genet 128:839–850

    CAS  PubMed  Google Scholar 

  • Washburn CF, Thomas JF (2000) Reversion of flowering in Glycine max (Fabaceae). Am J Bot 87:1425–1438

    CAS  PubMed  Google Scholar 

  • Watanabe S, Hideshima R, Xia Z et al (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R et al (2011) A map based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    Google Scholar 

  • Weiss MG (1970) Genetic linkage in soybeans. Linkage group IV 1. Crop Sci 10(4):368–370

    Google Scholar 

  • Wilcox JR, Premachandra GS, Young KA et al (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Google Scholar 

  • Wilson LA (1996) Comparison of lipoxygenase-null and lipoxygenase-containing soybeans for foods. In: Piazza G (ed) Lipoxygenase enzymes and lipoxygenase pathway enzymes. AOCS Press, Champaign, pp 209–225

    Google Scholar 

  • Wilson RF (2004) Seed composition. In: Boerma RH, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. American Soybean Association, Madison, pp 621–677

    Google Scholar 

  • Yadav RK, Shukla RK, Chattopadhyay D (2009) Soybean cultivar resistant to Mungbean yellow mosaic India virus infection induces viral RNA degradation earlier than the susceptible cultivar. Virus Res 144:89–95

    CAS  PubMed  Google Scholar 

  • Yamada Y, Nomura T, Harashima H et al (2012) Post-nuclear gene delivery events for transgene expression by biocleavable polyrotaxanes. Biomaterials 33(15):3952–3958

    CAS  PubMed  Google Scholar 

  • Yamanaka N, Morishita M, Mori T et al (2015) Multiple Rpp-gene pyramiding confers resistance to Asian soybean rust isolates that are virulent on each of the pyramided genes. Trop Plant Pathol 40:283–290

    Google Scholar 

  • Yan B, Reddy MS, Collins GB et al (2000) Agrobacterium tumefaciens—mediated transformation of soybean [Glycine max (L.) Merrill] using immature zygotic cotyledon explants. Plant Cell Rep 19:1090–1097

    CAS  PubMed  Google Scholar 

  • Yang K, Jeong N, Moon JK et al (2010) Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered 101(6):757–768

    CAS  PubMed  Google Scholar 

  • Yang QH, Gai JY (2011) Identification, inheritance and gene mapping of resistance to a virulent Soybean mosaic virus strain SC15 in soybean. Plant Breed 130:128–132

    CAS  Google Scholar 

  • Yang H, Wang W, He Q, Xiang S, Tian D, Zhao T, Gai J (2017) Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiol Mol Biol Plants 23(4):877–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yorinori JT, Paiva WM, Frederick RD et al (2005) Epidemics of soybean rust (Phakopsorapachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Dis 89:675–677

    CAS  PubMed  Google Scholar 

  • Yu K, Woodrow L, Poysa V (2016) Registration of lipoxygenase free food grade soybean Germplasm, HS-151. Can J Plant Sci 96:148–150

    CAS  Google Scholar 

  • Yu O, Shi J, Hession AO et al (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    CAS  PubMed  Google Scholar 

  • Yu Y, Liang H, Wang S, Lian Y, Wei Y, Wang T (2010) Research progress and commercialization on transgenic soybean in China. Soybean Sci 29:143–150. https://doi.org/10.11861/j.issn.1000-9841.2010.01.0143

    Article  Google Scholar 

  • Zhai H, Lü S, Liang S et al (2014) GmFT4, a homologue of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One 9:e89030

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Cheng H, Wang H et al (2010) Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.). J Genet Genomics 37(8):545–556

    CAS  PubMed  Google Scholar 

  • Zhang H, Goettel W, Song Q et al (2020) Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet 16(11):e1009114. https://doi.org/10.1371/journal.pgen.1009114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Singh AK (2020) Genetic control and geo-climate adaptation of pod dehiscence provide novel insights into soybean domestication. Genes Genome Genet 10:545–554

    Google Scholar 

  • Zhao SW, Wang H (1992) A new electrophoretic variant of SBTi-A2 in soybean seed protein. Soybean Genet Newsl 19:22–24

    Google Scholar 

  • Zhu J, Takeshima R, Harigai K et al (2018) Loss of function of the E1-Like-b gene associates with early flowering under long-day conditions in soybean. Front Plant Sci 9:1867

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, A., Kumar, V. (2022). Soybean Breeding. In: Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. (eds) Fundamentals of Field Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-16-9257-4_17

Download citation

Publish with us

Policies and ethics