Skip to main content

Predicting Biomarkers and Therapeutic Targets in Cancer

  • Chapter
  • First Online:
Computational Intelligence in Oncology

Abstract

The identification of specific patient therapeutic strategies, drug reactions, and efficacy of the management during the early period of cancer may help in guiding the medical oncologists in the selection of anti-cancer treatment for a person suffering from cancer. Also, it helps in calculating the improvable of the toxicity to benefit ratio. The success of this treatment is due to the emergence of predictive biomarkers. A predictive biomarker is a simple tool usually measured before treatment and provides information on the probability of response to a particular therapy. Several beneficial reports and appropriate evidence-based on the roles of prognostic and predictive biomarkers of known therapeutic targets in different cancer types including breast, colorectal, and non-small cell lung cancers in adults are also observed from different reviews. However, it is found that the utilization of predictive biomarkers incorporating with some drugs derived from natural sources such as trabectedin, cabazitaxel, and alvocidib is a bit slower than usual. Thus, this review paper covers the recent advances of cancer biomarkers which are used to forecast the effectiveness of selected natural compounds focusing on human clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung, C., & Christianson, M. (2014). Predictive and prognostic biomarkers with therapeutic targets in breast, colorectal, and non-small cell lung cancers: A systemic review of current development, evidence, and recommendation. Journal of Oncology Pharmacy Practice, 20(1), 11–28.

    Article  Google Scholar 

  2. Pezo, R. C., & Bedard, P. L. (2015) Definition: Translational and personalised medicine, biomarkers, pharmacodynamics. ESMO Handbook of Translational Research.

    Google Scholar 

  3. Carlomagno, N., Incollingo, P., Tammaro, V., Peluso, G., Rupealta, N., Chiacchio, G., Sandoval Sotelo, M. L., Minieri, G., Pisani, A., Riccio, E., & Sabbatini, M. (2017). Diagnostic, predictive, prognostic, and therapeutic molecular biomarkers in third millennium: A breakthrough in gastric cancer. BioMed Research International.

    Google Scholar 

  4. Animesh, S., Singh, Y. D. (2021). A comprehensive study on aptasensors for cancer diagnosis. Current Pharmaceutical Biotechnology, 1;22(8), 1069–1084.

    Google Scholar 

  5. Durães, C., Almeida, G. M., Seruca, R., Oliveira, C., & Carneiro, F. (2014). Biomarkers for gastric cancer: Prognostic, predictive or targets of therapy? VirchowsArchiv, 464(3), 367–378.

    Article  Google Scholar 

  6. Lin, L. L., Huang, H. C., & Juan, H. F. (2012). Discovery of biomarkers for gastric cancer: A proteomics approach. Journal of Proteomics, 75(11), 3081–3097.

    Article  Google Scholar 

  7. FDA-NIH Biomarker Working Group (2016). BEST (Biomarkers, Endpoints, and other Tools). https://www.ncbi.nlm.nih.gov/books/. Accessed December 22, 2016.

  8. Scagliotti, G., Hanna, N., Fossella, F., Sugarman, K., Blatter, J., Peterson, P., Simms, L., & Shepherd, F. A. (2009). The differential efficacy of pemetrexed according to NSCLC histology: A review of two Phase III studies. The Oncologist, 14(3), 253–263.

    Article  Google Scholar 

  9. Ledermann, J., Harter, P., Gourley, C., Friedlander, M., Vergote, I., Rustin, G., Scott, C., Meier, W., Shapira-Frommer, R., Safra, T., & Matei, D. (2012). Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. New England Journal of Medicine, 366(15), 1382–1392.

    Article  Google Scholar 

  10. Buonaguro, F. M., Pauza, D., Tornesello, M. L., Hainaut, P., Franco, R., & Marincola, F. M. (2014). Cancer diagnostic and predictive biomarkers.

    Google Scholar 

  11. Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences, 87(23), 9193–9196.

    Article  MATH  Google Scholar 

  12. Sun, Y., Zhu, S., Ma, K., Liu, W., Yue, Y., Hu, G., Lu, H., & Chen, W. (2019). Identification of 12 cancer types through genome deep learning. Scientific Reports, 9(1), 1–9.

    Article  Google Scholar 

  13. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 1(13), 8–17.

    Article  Google Scholar 

  14. Shan, L., Yu, J., He, Z., Chen, S., Liu, M., Ding, H., Xu, L., Zhao, J., Yang, A., & Jiang, H. (2020). Defining relative mutational difficulty to understand cancer formation. Cell Discovery, 6(1), 1–7.

    Article  Google Scholar 

  15. Newberg, J. Y., Mann, K. M., Mann, M. B., Jenkins, N. A., & Copeland, N. G. (2018). SBCDDB: Sleeping beauty cancer driver database for gene discovery in mouse models of human cancers. Nucleic Acids Research, 46(D1), D1011–D1017.

    Article  Google Scholar 

  16. Wang, T., Ruan, S., Zhao, X., Shi, X., Teng, H., Zhong, J., You, M., Xia, K., Sun, Z., & Mao, F. (2021). OncoVar: An integrated database and analysis platform for oncogenic driver variants in cancers. Nucleic Acids Research, 49(D1), D1289–D1301.

    Article  Google Scholar 

  17. Chen, W. H., Lu, G., Chen, X., Zhao, X. M., Bork, P. (2016). OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Research, 45(D1), D940–D944.

    Google Scholar 

  18. Freshour, S. L., Kiwala, S., Cotto, K. C., Coffman, A. C., McMichael, J. F., Song, J. J., Griffith, M., Griffith, O. L., Wagner, A. H. (2021). Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Research, 49(D1), D1144–1151.

    Google Scholar 

  19. Chung, I. F., Chen, C. Y., Su, S. C., Li, C. Y., Wu, K. J., Wang, H. W., & Cheng, W. C. (2016). DriverDBv2: A database for human cancer driver gene research. Nucleic Acids Research, 44(D1), D975–D979.

    Article  Google Scholar 

  20. Huang, C. C., Chan, S. Y., Lee, W. C., Chiang, C. J., Lu, T. P., & Cheng, S. H. (2019). Development of a prediction model for breast cancer based on the national cancer registry in Taiwan. Breast Cancer Research, 21(1), 1–9.

    Article  Google Scholar 

  21. Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pander, A., & Chinnaiyan, A. M. (2004). ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia, 6(1), 1–6.

    Article  Google Scholar 

  22. Pradeepkiran, J. A., Sainath, S. B., Kumar, K. K., Balasubramanyam, L., Prabhakar, K. V., & Bhaskar, M. (2015). CGMD: An integrated database of cancer genes and markers. Scientific Reports, 5(1), 1–7.

    Article  Google Scholar 

  23. Huang, C. H., Peng, H. S., & Ng, K. L. (2015). Prediction of cancer proteins by integrating protein interaction, domain frequency, and domain interaction data using machine learning algorithms. BioMed Research International, 17, 2015.

    Google Scholar 

  24. Dingerdissen, H. M., Bastian, F., Vijay-Shanker, K., Robinson-Rechavi, M., Bell, A., Gogate, N., Gupta, S., Holmes, E., Kahsay, R., Keeney, J., & Kincaid, H. (2020). OncoMX: A knowledgebase for exploring cancer biomarkers in the context of related cancer and healthy data. JCO Clinical Cancer Informatics, 4, 210–220.

    Article  Google Scholar 

  25. Zhang, X., Sun, X. F., Cao, Y., Ye, B., Peng, Q., Liu, X., Shen, B., & Zhang, H. (2018). CBD: A biomarker database for colorectal cancer. Database, 1, 2018.

    Google Scholar 

  26. Wishart, D. S., Bartok, B., Oler, E., Liang, K. Y., Budinski, Z., Berjanskii, M., Guo, A., Cao, X., & Wilson, M. (2021). MarkerDB: An online database of molecular biomarkers. Nucleic Acids Research, 49(D1), D1259–D1267.

    Article  Google Scholar 

  27. Lever, J., Jones, M. R., Danos, A. M., Krysiak, K., Bonakdar, M., Grewal, J. K., Culibrk, L., Griffith, O. L., Griffith, M., & Jones, S. J. (2019). Text-mining clinically relevant cancer biomarkers for curation into the CIViC database. Genome Medicine, 11(1), 1–6.

    Article  Google Scholar 

  28. Song, J., Su, H., Zhou, Y. Y., & Guo, L. L. (2013). Prognostic value of matrix metalloproteinase 9 expression in breast cancer patients: A meta-analysis. Asian Pacific Journal of Cancer Prevention, 14(3), 1615–1621.

    Article  Google Scholar 

  29. Zhang, Y., Wang, Y., Wan, Z., Liu, S., Cao, Y., & Zeng, Z. (2014). Sphingosine kinase 1 and cancer: A systematic review and meta-analysis. PloS One, 9(2), e90362.

    Google Scholar 

  30. Wang, Y. U., & Zeng, T. (2013). Neutrophil gelatinase-associated lipocalin protein as a biomarker in the diagnosis of breast cancer: A meta-analysis. Biomedical Reports, 1(3), 479–483.

    Article  Google Scholar 

  31. Jiang, M., Lin, X., He, R., Lin, X., Liang, L., Tang, R., Xiong, D., Wei, K., Dang, Y., Feng, Z., & Chen, G. (2016). Decoy receptor 3 (DcR3) as a biomarker of tumor deterioration in female reproductive cancers: A meta-analysis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 22, 1850.

    Article  Google Scholar 

  32. Ahmadi Moughari, F., & Eslahchi, C. (2021). A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information. PloS One, 16(4), e0250620.

    Google Scholar 

  33. Arif, K. M., Elliott, E. K., Haupt, L. M., & Griffiths, L. R. (2020). Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers, 12(10), 2922.

    Article  Google Scholar 

  34. Paschoal, A. R., Maracaja-Coutinho, V., Setubal, J. C., Simões, Z. L., Verjovski-Almeida, S., & Durham, A. M. (2012). Non-coding transcription characterization and annotation: A guide and web resource for non-coding RNA databases. RNA Biology, 9(3), 274–282.

    Article  Google Scholar 

  35. Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: From microRNA sequences to function. Nucleic Acids Research, 47(D1), D155–D162.

    Article  Google Scholar 

  36. Negri, T. D., Alves, W. A., Bugatti, P. H., Saito, P. T., Domingues, D. S., & Paschoal, A. R. (2019). Pattern recognition analysis on long noncoding RNAs: A tool for prediction in plants. Briefings in Bioinformatics, 20(2), 682–689.

    Article  Google Scholar 

  37. Maracaja-Coutinho, V., Paschoal, A. R., Caris-Maldonado, J. C., Borges, P. V., Ferreira, A. J., Durham, A. M. (2019). Noncoding RNAs databases: Current status and trends. Computational Biology of Non-Coding RNA, 2019, 251–285.

    Google Scholar 

  38. Singh, N. K. (2017). microRNAs databases: Developmental methodologies, structural and functional annotations. Interdisciplinary Sciences: Computational Life Sciences, 9(3), 357–377.

    Google Scholar 

  39. Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836–1852.

    Article  Google Scholar 

  40. Szwacka, M., Pawełkowicz, M., Skarzyńska, A., Osipowski, P., Wojcieszek, M., Przybecki, Z., & Pląder, W. (2018). Biological significance, computational analysis, and applications of plant microRNAs. Acta Physiologiae Plantarum, 40(8), 1–30.

    Article  Google Scholar 

  41. Bharadwaj, K. K., Srivastava, A., Panda, M. K., Singh, Y. D., Maharana, R., Mandal, K., Singh, M., Singh, D., Das, M., Murmu, D., Kabi, S. K. (2021) Computational intelligence in vaccine design against COVID-19. In Computational intelligence methods in COVID-19: surveillance, prevention, prediction and diagnosis (pp. 311–329). Singapore: Springer.

    Google Scholar 

  42. Lee, R. C., Feinbaum, R. L., Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.

    Google Scholar 

  43. Sarma, M. K., Ningthoujam, R., Panda, M. K., Babu, P. J., Srivastava, A., Das, M., & Singh, Y. D. (2021). Translational healthcare system through bioinformatics. In Translational bioinformatics applications in healthcare, 2021 Apr 19 (pp. 3–21). CRC Press.

    Google Scholar 

  44. Lukasik, A., Wójcikowski, M., & Zielenkiewicz, P. (2016). Tools4miRs–one place to gather all the tools for miRNA analysis. Bioinformatics, 32(17), 2722–2724.

    Article  Google Scholar 

  45. Amorim, T. S., Pedro, D. L., & Paschoal, A. R. (2022). MicroRNA databases and tools. InmiRNomics (pp. 131–166). Humana.

    Google Scholar 

  46. Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(suppl_1), D140–D144.

    Google Scholar 

  47. Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., Yao, L., Zhang, Y., Miao, R., Cao, Y., & Zhao, Y. (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. InBMC genomics (Vol. 11, No. 4, pp. 1–8). BioMed Central.

    Google Scholar 

  48. Repana, D., Nulsen, J., Dressler, L., Bortolomeazzi, M., Venkata, S. K., Tourna, A., Yakovleva, A., Palmieri, T., & Ciccarelli, F. D. (2019). The network of cancer genes (NCG): A comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biology, 20(1), 1–2.

    Article  Google Scholar 

  49. Mitra, S., Das, S., Das, S., Ghosal, S., & Chakrabarti, J. (2012). HNOCDB: A comprehensive database of genes and miRNAs relevant to head and neck and oral cancer. Oral Oncology, 48(2), 117–119.

    Article  Google Scholar 

  50. Kao, S., Shiau, C. K., Gu, D. L., Ho, C. M., Su, W. H., Chen, C. F., Lin, C. H., & Jou, Y. S. I. G. D. B. (2012). NSCLC: Integrated genomic database of non-small cell lung cancer. Nucleic Acids Research, 40(D1), D972–D977.

    Article  Google Scholar 

  51. Plon, S. E, Eccles, D. M., Easton, D., Foulkes, W. D., Genuardi, M., Greenblatt, M. S., Hogervorst, F. B., Hoogerbrugge, N., Spurdle, A. B., & Tavtigian, S. V. (2008). IARC unclassified genetic variants working group. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Human Mutation, 29(11), 1282–1291.

    Google Scholar 

  52. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., & Edkins, S. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.

    Article  Google Scholar 

  53. Lan, H., Lu, H., Wang, X., Jin, H. (2015). MicroRNAs as potential biomarkers in cancer: opportunities and challenges. BioMed Research International.

    Google Scholar 

  54. Perron, M. P., & Provost, P. (2008). Protein interactions and complexes in human microRNA biogenesis and function. Frontiers in Bioscience: A Journal and Virtual Library, 1(13), 2537.

    Article  Google Scholar 

  55. Wightman, B., Ha, I., Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.

    Google Scholar 

  56. Biomarkers Definitions Working Group, Atkinson, A. J., Colburn, W. A., DeGruttola, V. G., DeMets, D. L., Downing, G. J., Hoth, D. F., Oates, J. A., Peck, C. C., Schooley, R. T., & Spilker, B. A. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics, 69(3), 89–95.

    Google Scholar 

  57. Lawrie, C. H., Gal, S., Dunlop, H. M., Pushkaran, B., Liggins, A. P., Pulford, K., Banham, A. H., Pezzella, F., Boultwood, J., Wainscoat, J. S., & Hatton, C. S. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology, 141(5), 672–675.

    Article  Google Scholar 

  58. Xiong, D. D., Lv, J., Wei, K. L., Feng, Z. B., Chen, J. T., Liu, K. C., Chen, G., & Luo, D. Z. (2017). A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: An integrated study of 1110 cases. Oncology Reports, 37(6), 3297–3304.

    Article  Google Scholar 

  59. Ciui, B., Jambrec, D., Sandulescu, R., & Cristea, C. (2017). Bioelectrochemistry for miRNA detection. Current Opinion in Electrochemistry, 5(1), 183–192.

    Article  Google Scholar 

  60. Mazan-Mamczarz, K., & Gartenhaus, R. B. (2013). Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leukemia Research, 37(11), 1420–1428.

    Article  Google Scholar 

  61. Ouyang, M., Li, Y., Ye, S., Ma, J., Lu, L., Lv, W., Chang, G., Li, X., Li, Q., Wang, S., & Wang, W. (2014). MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PloS One, 9(5), e96228.

    Google Scholar 

  62. Dong, Y., Wu, W. K., Wu, C. W., Sung, J. J., Yu, J., & Ng, S. S. (2011). MicroRNA dysregulation in colorectal cancer: A clinical perspective. British Journal of Cancer, 104(6), 893–898.

    Article  Google Scholar 

  63. Maugeri-Saccà, M., Coppola, V., Bonci, D., & De Maria, R. (2012). MicroRNAs and prostate cancer: From preclinical research to translational oncology. The Cancer Journal, 18(3), 253–261.

    Article  Google Scholar 

  64. Tumilson, C. A., Lea, R. W., Alder, J. E., & Shaw, L. (2014). Circulating microRNA biomarkers for glioma and predicting response to therapy. Molecular Neurobiology, 50(2), 545–558.

    Article  Google Scholar 

  65. Dash, R., Sahu, A., Panda, M. K., Das, M., & Singh, Y. D. (2021). Genomics in clinical care through precision medicine and personalized treatments. Translational Bioinformatics in Healthcare and Medicine, 1, 49–58.

    Article  Google Scholar 

  66. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866.

    Article  Google Scholar 

  67. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., & Li, Q. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.

    Article  Google Scholar 

  68. Cheng, L., Sharples, R. A., Scicluna, B. J., & Hill, A. F. (2014). Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. Journal of Extracellular Vesicles, 3(1), 23743.

    Article  Google Scholar 

  69. Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Köppel, T., Jahantigh, M. N., Lutgens, E., & Wang, S. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signalling, 2(100), ra81.

    Google Scholar 

  70. Muralidharan-Chari, V., Clancy, J. W., Sedgwick, A., & D’Souza-Schorey, C. (2010). Microvesicles: Mediators of extracellular communication during cancer progression. Journal of Cell Science, 123(10), 1603–1611.

    Article  Google Scholar 

  71. Turchinovich, A., Weiz, L., Langheinz, A., & Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. Nucleic Acids Research, 39(16), 7223–7233.

    Article  Google Scholar 

  72. Mehta, S., Shelling, A., Muthukaruppan, A., Lasham, A., Blenkiron, C., Laking, G., & Print, C. (2010). Predictive and prognostic molecular markers for cancer medicine. Therapeutic Advances in Medical Oncology, 2(2), 125–148.

    Article  Google Scholar 

  73. Echle, A., Rindtorff, N. T., Brinker, T. J., Luedde, T., Pearson, A. T., & Kather, J. N. (2021). Deep learning in cancer pathology: A new generation of clinical biomarkers. British Journal of Cancer, 124(4), 686–696.

    Article  Google Scholar 

  74. Jagga, Z., & Gupta, D. (2015). Machine learning for biomarker identification in cancer research—developments toward its clinical application. Personalized Medicine, 12(4), 371–387.

    Article  Google Scholar 

  75. Sahu, A., Dash, R., Panda, M. K., & Singh, Y. D. (2021). Viroinformatics: A modern approach to counter viral diseases through computational informatics. In Translational bioinformatics in healthcare and medicine, 2021 Jan 1 (pp. 157–169). Academic Press.

    Google Scholar 

  76. Lauraitis, A., Maskeliūnas, R., & Damaševičius, R. (2018). ANN and fuzzy logic based model to evaluate Huntington disease symptoms. Journal of Healthcare Engineering, 11, 2018.

    Google Scholar 

  77. Martinkova, J., Gadher, S. J., Hajduch, M., & Kovarova, H. (2009). Challenges in cancer research and multifaceted approaches for cancer biomarker quest. FEBS Letters, 583(11), 1772–1784.

    Article  Google Scholar 

  78. Hirsch, M. S., & Watkins, J. (2020). A comprehensive review of biomarker use in the gynecologic tract including differential diagnoses and diagnostic pitfalls. Advances in Anatomic Pathology, 27(3), 164–192.

    Article  Google Scholar 

  79. Deschoolmeester, V., Baay, M., Specenier, P., Lardon, F., & Vermorken, J. B. (2010). A review of the most promising biomarkers in colorectal cancer: One step closer to targeted therapy. The Oncologist, 15(7), 699.

    Article  Google Scholar 

  80. Jelski, W., & Mroczko, B. (2020). Biochemical markers of colorectal cancer-present and future. Cancer Management and Research, 12, 4789.

    Article  Google Scholar 

  81. Jabeen, A., Ahmad, N., & Raza, K. (2019). Differential expression analysis of ZIKV infected human RNA sequence reveals potential genetic biomarkers. In International work-conference on bioinformatics and biomedical engineering, 2019 May 8 (pp. 283–294). Springer.

    Google Scholar 

  82. Zhang, Y., Qazi, S., & Raza, K. (2021). Differential expression analysis in ovarian cancer: A functional genomics and systems biology approach. Saudi Journal of Biological Sciences, 28(7), 4069–4081.

    Article  Google Scholar 

  83. Kato, S., & Honda, K. (2020). Use of biomarkers and imaging for early detection of pancreatic cancer. Cancers, 12(7), 1965.

    Article  Google Scholar 

  84. Li, Y. (2010). Detection of tear biomarkers for future prostate cancer diagnosis. The Open Biomarkers Journal, 3(1).

    Google Scholar 

  85. Atanasov, A. G., Yeung, A. W., & Banach, M. (2018). Natural products for targeted therapy in precision medicine, 1559–1562.

    Google Scholar 

  86. Moosavi, M. A., Haghi, A., Rahmati, M., Taniguchi, H., Mocan, A., Echeverría, J., Gupta, V. K., Tzvetkov, N. T., & Atanasov, A. G. (2018). Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Letters, 28(424), 46–69.

    Article  Google Scholar 

  87. Singh, Y. D., Panda, M. K., Satapathy, K. B. (2020). Ethnomedicine for drug discovery. In Advances in pharmaceutical biotechnology (pp. 15–28). Singapore: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ningthoujam, R. et al. (2022). Predicting Biomarkers and Therapeutic Targets in Cancer. In: Raza, K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, vol 1016. Springer, Singapore. https://doi.org/10.1007/978-981-16-9221-5_13

Download citation

Publish with us

Policies and ethics