Skip to main content

Computational Intelligence in Oncology: Past, Present, and Future

  • Chapter
  • First Online:
Computational Intelligence in Oncology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1016))

  • 635 Accesses

Abstract

Computational Intelligence (CI) methods are being widely used in different fields of studies including medical sciences and oncology research. CI methods are applied in different facets of oncology including tumor classification, early prediction and diagnosis, survival prediction, modeling and simulation of cell growth, therapy optimization, and overall cancer management. This chapter aims to present introductory background about the field of Oncology, computational Oncology, roles of CI in various aspects of oncology research including classification, Prediction, risk analysis, therapy, optimized cancer treatment, management, etc. It also describes the current trends and future of CI in oncology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Academics & Hospitals. (2021). Flatiron Health. https://flatiron.com/academics/ (Accessed on 11th August, 2021).

  2. Ahmad, S. U., & Bergen, S. W. (2010, July 1). A genetic algorithm approach to the inverse problem of treatment planning for intensity-modulated radiotherapy. Biomedical Signal Processing and Control, 5(3), 189–195.

    Google Scholar 

  3. Ahmad, G., Khan, M. A., Abbas, S., Athar, A., Khan, B. S., & Aslam, M. S. (2019). Automated diagnosis of hepatitis B using multilayer mamdani fuzzy inference system. Journal of Healthcare Engineering, 1–11. https://doi.org/10.1155/2019/6361318

  4. ANDATA. (2016). Artificial intelligence, computational intelligence, soft computing, natural computing—What’s the difference? (Accessed 4th August, 2021). https://www.andata.at/en/answer/artificial-intelligence-computational-intelligence-softcomputing-natural-computation-whats-the-difference.html

  5. Armitage, P., & Doll, R. (1954). The age distribution of cancer and a multi-stage theory of carcinogenesis. British Journal of Cancer, 8(1), 1–12.

    Google Scholar 

  6. Barbolosi, D., Ciccolini, J., Lacarelle, B., Barlési, F., & André, N. (2016, April). Computational oncology—Mathematical modelling of drug regimens for precision medicine. Nature Reviews Clinical Oncology, 13(4), 242–254.

    Google Scholar 

  7. Blumenson, L. E., & Bross, I. D. (1969 March). A mathematical analysis of the growth and spread of breast cancer. Biometrics, 1, 95–109.

    Google Scholar 

  8. Chamseddine, I. M., Frieboes, H. B., & Kokkolaras, M. (2020, May 19) Multi-objective optimization of tumor response to drug release from vasculature-bound nanoparticles. Scientific Reports, 10(1), 1–1.

    Google Scholar 

  9. Chavan, V., & Penev, L. (2011). The data paper: A mechanism to incentivize data publishing in biodiversity science. BMC Bioinformatics, 12(15), S2.ed. 15:e1002683.

    Google Scholar 

  10. Davis, A., Gao, R., & Navin, N. (2017). Tumor evolution: Linear, branching, neutral or punctuated? Biochimica et Biophysica Acta, 1867(2), 151–161. https://doi.org/10.1016/j.bbcan.2017.01.003

    Article  Google Scholar 

  11. de Anda-Jáuregui, G., & Hernández-Lemus, E. (2020, April 7) Computational oncology in the multi-omics era: State of the art. Frontiers in Oncology, 10, 423.

    Google Scholar 

  12. Di Lonardo, A., Nasi, S., & Pulciani, S. (2015). Cancer: We should not forget the past. Journal of Cancer, 6(1), 29–39. https://doi.org/10.7150/jca.10336

    Article  Google Scholar 

  13. Dias, J., Rocha, H., Ferreira, B., & do Carmo Lopes, M. (2014 September) A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization. Central European Journal of Operations Research, 22(3), 431–55.

    Google Scholar 

  14. Enderling, H., & Rejniak, K. A. (2013 September 13) Simulating cancer: Computational models in oncology. Frontiers in Oncology, 3, 233.

    Google Scholar 

  15. Faguet, G. B. (2015). A brief history of cancer: Age-old milestones underlying our current knowledge database. International Journal of Cancer, 136(9), 2022–2036. https://doi.org/10.1002/ijc.29134

    Article  Google Scholar 

  16. Gluzman, M., Scott, J. G., & Vladimirsky, A. (2020 April 29). Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory. Proceedings of the Royal Society B, 287(1925), e20192454.

    Google Scholar 

  17. Gordon, R. (2021). Robust artificial intelligence tools to predict future cancer. Retrieved August 11, 2021, from MIT News | Massachusetts Institute of Technology website: https://news.mit.edu/2021/robust-artificial-intelligence-tools-predict-future-cancer-0128

  18. Günakan, E., Atan, S., Haberal, A. N., Küçükyıldız, İ. A., Gökçe, E., & Ayhan, A. (2018). A novel prediction method for lymph node involvement in endometrial cancer: Machine learning. International Journal of Gynecologic Cancer, 29(2), 320–324. https://doi.org/10.1136/ijgc-2018-000033

  19. Hanselmann, R. G., & Welter, C. (2016). Origin of cancer: An information, energy, and matter disease. Frontiers in Cell and Developmental Biology, 4, 121. https://doi.org/10.3389/fcell.2016.00121

    Article  Google Scholar 

  20. Hashmia, A., & Khan, M. S. (2015). Diagnosis blood test for liver disease using fuzzy logic. International Journal of Sciences: Basic and Applied Research, 20, 151–183.

    Google Scholar 

  21. Hossain, M. A., Saiful Islam, S. M., Quinn, J. M. W., Huq, F., & Moni, M. A. (2019). Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality. Journal of Biomedical Informatics, 100, 103313. https://doi.org/10.1016/j.jbi.2019.103313

  22. Hou, Q., Wang, J., Chen, Y., & Galvin, J. M. (2003, September) Beam orientation optimization for IMRT by a hybrid method of the genetic algorithm and the simulated dynamics. Medical Physics, 30(9), 2360–2367.

    Google Scholar 

  23. Hu, G., Li, Y., Yang, S., Bai, Y., & Huang, J. (2015, April 23) Temperature field optimization and magnetic nanoparticles optimal approximation of MFH for cancer therapy. IEEE Transactions on Magnetics, 51(3), 1–4.

    Google Scholar 

  24. Iyer, K. S., & Saksena, V. N. (1970, September) A stochastic model for the growth of cells in cancer. Biometrics, 1, 401–410.

    Google Scholar 

  25. Karolak, A., Markov, D. A., McCawley, L. J., Rejniak, K. A. (2018, January 31) Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. Journal of The Royal Society Interface, 15(138), 20170703.

    Google Scholar 

  26. Kuang, C. (2017). Can A.I. be taught to explain itself? The New York Times. November 21, 2017. https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html (Accessed 11th August, 2021).

  27. Kusters, R., Misevic, D., Berry, H., Cully, A., Le Cunff, Y., Dandoy, L., & Wehbi, F. (2020) Interdisciplinary research in artificial intelligence: Challenges and opportunities. Frontiers in Big Data, 3. https://doi.org/10.3389/fdata.2020.577974

  28. Laird, A. K. (1964) Dynamics of tumor growth. British Journal of Cancer, 18, 490–502.

    Google Scholar 

  29. Lefor, A. T. (2011, August 1) Computational oncology. Japanese Journal of Clinical Oncology, 41(8), 937–947.

    Google Scholar 

  30. Li, Y., & Lei, J. (2009, October 9) A feasible solution to the beam-angle-optimization problem in radiotherapy planning with a DNA-based genetic algorithm. IEEE Transactions on Biomedical Engineering, 57(3), 499–508.

    Google Scholar 

  31. Liang, G., Fan, W., Luo, H., & Zhu, X. (2020). The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomedicine & Pharmacotherapy, 128, 110255. https://doi.org/10.1016/j.biopha.2020.110255

  32. Lind, A. P., & Anderson, P. C. (2019). Predicting drug activity against cancer cells by random forest models based on minimal gsssenomic information and chemical properties. Plos One, 14(7), e0219774. https://doi.org/10.1371/journal.pone.0219774

  33. Lipinski, K. A., Barber, L. J., Davies, M. N., Ashenden, M., Sottoriva, A., & Gerlinger, M. (2016). Cancer evolution and the limits of predictability in precision cancer medicine. Trends in Cancer, 2(1), 49–63. https://doi.org/10.1016/j.trecan.2015.11.003

    Article  Google Scholar 

  34. Liu, X., Chen, Q., Liao, Y., Wang, W., Chen, A., & Qin, B. (2020, December 1) Layout optimization of corrector magnets for a proton therapy beamline via genetic algorithm. Nuclear instruments and methods in physics research section A: Accelerators, spectrometers. Detectors and Associated Equipment, 982, 164560.

    Google Scholar 

  35. Liu, C., Qi, L., Feng, Q.-X., Sun, S.-W., Zhang, Y.-D., & Liu, X.-S. (2019). Performance of a machine learning-based decision model to help clinicians decide the extent of lymphadenectomy (D1 vs. D2) in gastric cancer before surgical resection. Abdominal Radiology, 44(9), 3019–3029. https://doi.org/10.1007/s00261-019-02098-w

  36. London, J. W. (2018). Cancer research data-sharing networks. JCO Clinical Cancer Informatics. 2, 1–3.

    Google Scholar 

  37. Mumenthaler, S., D'Antonio, G., Preziosi, L., & Macklin, P. (2013, July 26) The need for integrative computational oncology: An illustrated example through MMP—Mediated tissue degradation. Frontiers in Oncology, 3, 194.

    Google Scholar 

  38. Nagy, M., Radakovich, N., & Nazha, A. (2020). Machine learning in oncology: What should clinicians know? JCO Clinical Cancer Informatics, 4, 799–810. https://doi.org/10.1200/cci.20.00049

  39. ORIEN. (2021). Oncology research information exchange network. http://oriencancer.org/ (Accessed 11th August, 2021).

  40. Paik, E. S., Lee, J.-W., Park, J.-Y., Kim, J.-H., Kim, M., Kim, T.-J., & Seo, S. W. (2019). Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods. Journal of Gynecologic Oncology, 30(4). https://doi.org/10.3802/jgo.2019.30.e65

  41. Petrovic, S., & Castro, E. (Eds.). (2011, April 27). A genetic algorithm for radiotherapy pre-treatment scheduling. In: European conference on the applications of evolutionary computation (pp. 454–463). Springer.

    Google Scholar 

  42. Raza, K., & Singh, N. K. (2021, January 27) A tour of unsupervised deep learning for medical image analysis. Current Medical Imaging. 17(9), 1059–1077.

    Google Scholar 

  43. Rosenfeld, S., & Kapetanovic, I. (2008, January). Systems biology and cancer prevention: All options on the table. Gene Regulation and Systems Biology, 2, GRSB-S1114.

    Google Scholar 

  44. Ross, J.S., & Waldstreicher, J., et al. (2018). Overview and experience of the YODA project with clinical trial data sharing after 5 years. Science Data, 5, 180268.

    Google Scholar 

  45. Russakovsky, O., Deng, J., et al. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211–252.

    Article  MathSciNet  Google Scholar 

  46. Sendov, B., & Tsanev, R. (1968). Computer simulation of the regenerative processes in the liver. Journal of Theoretical Biology, 18(1), 90–104.

    Google Scholar 

  47. Sennaar, K. (2019). AI and machine learning for clinical trials: Examining 3 current applications. Emerj—Artificial Intelligence Research and Insight. https://emerj.com/ai-sector-overviews/ai-machine-learning-clinical-trials-examining-x-current-applications/ (Accessed 5th August, 2021).

  48. Sharma, M., Agrawal, S., & Deswal, S. (2020). Application of hybrid computational intelligence in health care. Hybrid Computational Intelligence, 123–148. https://doi.org/10.1016/b978-0-12-818699-2.00007-x

  49. Shlush, L. I., & Hershkovitz, D. (2015). Clonal evolution models of tumor heterogeneity. In American society of clinical oncology educational book. American society of clinical oncology. Annual meeting (pp. e662–665). https://doi.org/10.14694/EdBook_AM.2015.35.e662

  50. Singh, N. K., & Raza, K. (2021). Medical image generation using generative adversarial networks: A review. Health Informatics: A Computational Perspective in Healthcare, 77–96.

    Google Scholar 

  51. Somarelli, J. A., Gardner, H., Cannataro, V. L., Gunady, E. F., Boddy, A. M., Johnson, N. A., Fisk, J. N., Gaffney, S. G., Chuang, J. H., Li, S., Ciccarelli, F. D., Panchenko, A. R., Megquier, K., Kumar, S., Dornburg, A., DeGregori, J., & Townsend, J. P. (2020). Molecular biology and evolution of cancer: From discovery to action. Molecular Biology and Evolution, 37(2), 320–326. https://doi.org/10.1093/molbev/msz242

    Article  Google Scholar 

  52. Stanzione, A., Cuocolo, R., Del Grosso, R., Nardiello, A., Romeo, V., Travaglino, A., Raffone, A., Bifulco, G., Zullo, F., Insabato, L., & Mainenti, P. P. (2021). Deep myometrial infiltration of endometrial cancer on MRI: A radiomics-powered machine learning pilot study. Academic Radiology, 28(5), 737–744. https://doi.org/10.1016/j.acra.2020.02.028

  53. Taninaga, J., Nishiyama, Y., Fujibayashi, K., Gunji, T., Sasabe, N., Iijima, K., & Naito, T. (2019). Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: A case-control study. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48769-y

  54. Tse, S. M., Liang, Y., Leung, K. S., Lee, K. H., & Mok, T. S. A memetic algorithm for multiple-drug cancer chemotherapy schedule optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1), 84–91.

    Google Scholar 

  55. Tsompanas, M. A., Bull, L., Adamatzky, A., & Balaz, I. (2021). In silico optimization of cancer therapies with multiple types of nanoparticles applied at different times. Computer Methods and Programs in Biomedicine, 1(200), 105886.

    Google Scholar 

  56. Wang, S., Zhou, M., Gevaert, O., Tang, Z., Dong, D., Liu, Z., & Jie, T. (2017). A multi-view deep convolutional neural networks for lung nodule segmentation. In Conference proceedings of the IEEE engineering medicine biology society (pp. 1752–1755).

    Google Scholar 

  57. Wang, Y., Wang, Z., Xu, J., Li, J., Li, S., Zhang, M., & Yang, D. (2018). Systematic identification of non-coding pharmacogenomic landscape in cancer. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05495-9

  58. Wani, N., & Raza, K. (2018, January 1). Multiple kernel-learning approach for medical image analysis. In Soft computing based medical image analysis (pp. 31–47). Academic Press.

    Google Scholar 

  59. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018.

    Google Scholar 

  60. Zech, J.R., Badgeley, M.A., Liu, M., Costa, A. B., Titano, J. J., & Oermann, E. K. (2018). Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLOS. MLambin, P., Roelofs, E., & Reymen, B., et al. (2013) ‘Rapid learning health care in oncology’: An approach towards decision support systems enabling customised radiotherapy. Radiother Oncology, 109, 159–64.

    Google Scholar 

Download references

Acknowledgements

SQ is supported by the DST-INSPIRE fellowship provided by the Department of Science & Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, K., Qazi, S., Sahu, A., Verma, S. (2022). Computational Intelligence in Oncology: Past, Present, and Future. In: Raza, K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, vol 1016. Springer, Singapore. https://doi.org/10.1007/978-981-16-9221-5_1

Download citation

Publish with us

Policies and ethics