Skip to main content

Advanced Nanomaterials for Infectious Diseases Therapeutics

  • Chapter
  • First Online:
Nanotechnology for Infectious Diseases

Abstract

The leading cause of deaths and morbidity worldwide are infectious diseases. The affect is more common in people with weakened immune systems and children. Development of multiple drug resistance limits the use of ongoing therapies to infections. This is one of the main disadvantages of conventional antimicrobial agents and leads to frequent administration of high doses of drugs, followed by adverse after-effects. Thus, stating that there is a serious and urgent need to overcome drug resistance by developing new therapeutics. The utility of nanoparticle systems may prove beneficial to control such issues and elevate the effectiveness of drugs. There is currently substantial interest in utilizing them as antimicrobial agents towards several microbes such as bacteria, parasites, viruses, and fungi. This chapter will examine the available reports on metal nanoparticles, encapsulated nanoparticles, and nanoantibiotics as new promising medically helpful tools for treating infectious diseases and their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Zeid Y, Ismail NS, McLean GR et al (2020) A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci 153:105465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aderibigbe BA (2017) Metal-based nanoparticles for the treatment of infectious diseases. Molecules 22:1370

    Article  CAS  PubMed Central  Google Scholar 

  • Ahmad T, Phul R, Khatoon N et al (2017) Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. N J Chem 41:2055–2061

    Article  CAS  Google Scholar 

  • Ahmad W, Kumar Jaiswal K, Amjad M (2021) Euphorbia herita leaf extract as a reducing agent in a facile green synthesis of iron oxide nanoparticles and antimicrobial activity evaluation. Inorg Nano-Metal Chem 51:1147–1154

    CAS  Google Scholar 

  • Akhtar S, Rehman S, Asiri SM, Khan FA, Baig U, Hakeem AS, Gondal MA (2020) Evaluation of bioactivities of zinc oxide, cadmium sulfide and cadmium sulfide loaded zinc oxide nanostructured materials prepared by nanosecond pulsed laser. Mater Sci Eng C 116:111156

    Article  CAS  Google Scholar 

  • Akpomie KG, Ghosh S, Gryzenhout M et al (2021) One-pot synthesis of zinc oxide nanoparticles via chemical precipitation for bromophenol blue adsorption and the antifungal activity against filamentous fungi. Sci Rep 11:8305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alahmari F, Rehman S, Almessiere M, Khan FA, Slimani Y, Baykal A (2021) Synthesis of Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) nanofibers by using electrospinning technique induce anti-cancer and anti-bacterial activities. J Biomol Struct Dyn 39(9):3186–3193

    CAS  PubMed  Google Scholar 

  • Alexander JW (2009) History of the medical use of a silver. Surg Infect 10:289–292

    Article  Google Scholar 

  • Al-Jameel SS, Rehman S, Almessiere MA, Khan FA, Slimani Y, Al-Saleh NS, Manikandan A, Al-Suhaimi EA, Baykal A (2021) Anti-microbial and anti-cancer activities of Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) nanoparticles. Artif Cells Nanomed Biotechnol 49(1):493–499

    Article  CAS  PubMed  Google Scholar 

  • Alkharsah KR, Rehman S, Alkhamis F, Alnimr A, Diab A, Al-Ali AK (2018) Comparative and molecular analysis of MRSA isolates from infection sites and carrier colonization sites. Ann Clin Microbiol Antimicrob 17(1):1–1

    Article  CAS  Google Scholar 

  • Allaker RP, Ren G (2008) Potential impact of nanotechnology on the control of infectious disease. Trans R Soc Trop Med Hyg 102:1–2

    Article  PubMed  Google Scholar 

  • Almessiere MA, Slimani Y, Rehman S, Khan FA, Polat EG, Sadaqat A, Shirsath SE, Baykal A (2020a) Synthesis of Dy-Y co-substituted manganese-zinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: comparison between sonochemical and sol-gel auto-combustion methods. Mater Sci Eng C 116:111186

    Article  CAS  Google Scholar 

  • Almessiere MA, Slimani Y, Rehman S, Khan FA, Güngüneş ÇD, Güner S, Shirsath SE, Baykal A (2020b) Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arab J Chem 13(10):7403–7417

    Article  CAS  Google Scholar 

  • Arvizo RR, Bhattacharyya S, Kudgus RA et al (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baig U, Gondal MA, Rehman S, Akhtar S (2020) Facile synthesis, characterization of nano-tungsten trioxide decorated with silver nanoparticles and their antibacterial activity against water-borne gram-negative pathogens. Appl Nanosci 10(3):851–860

    Article  CAS  Google Scholar 

  • Balasamy RJ, Ravinayagam V, Alomari M, Ansari MA, Almofty SA, Rehman S, Dafalla H, Marimuthu PR, Akhtar S, Al Hamad M (2019) Cisplatin delivery, anticancer and antibacterial properties of Fe/SBA-16/ZIF-8 nanocomposite. RSC Adv 9(72):42395–42408

    Article  CAS  Google Scholar 

  • Basumatari M, Devi RR, Gupta MK et al (2021) Musa balbisiana Colla pseudostem biowaste mediated zinc oxide nanoparticles: their antibiofilm and antibacterial potentiality. Curr Res Green Sustain Chem 4:100048

    Article  Google Scholar 

  • Casadevall A (1996) Antibody-based therapies for emerging infectious diseases. Emerg Infect Dis 2:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahal JS, Khan OF, Cooper CL et al (2016) Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci 113:E4133–E4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L et al (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Crooks RM, Zhao M, Sun L et al (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhao Y, Tian Y et al (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    Article  CAS  PubMed  Google Scholar 

  • Delavari M, Dalimi A, Ghaffarifar F et al (2014) In vitro study on cytotoxic effects of ZnO nanoparticles on promastigote and amastigote forms of Leishmania major (MRHO/IR/75/ER). Iran J Parasitol 9:6–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, McShan D, Zhang Y et al (2016) Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50:8840–8848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M et al (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:278–284

    Article  CAS  PubMed  Google Scholar 

  • Dutta PP, Bordoloi M, Gogoi K et al (2017) Antimalarial silver and gold nanoparticles: green synthesis, characterization and in vitro study. Biomed Pharmacother 91:567–580

    Article  CAS  PubMed  Google Scholar 

  • Esumi K, Akiyama S, Yoshimura T (2003) Multilayer formation using oppositely charged gold- and silver-dendrimer nanocomposites. Langmuir 19:76779–77681

    Article  CAS  Google Scholar 

  • Fatima Z, Kumari P, Rehman S, Hameed S (2021) Virulence traits of Candida spp.: an overview. In: Recent trends in mycological research. Springer, New York, pp 439–455

    Chapter  Google Scholar 

  • Fauci AS, Morens DM (2012) The perpetual challenge of infectious diseases. N Engl J Med 366:454–461

    Article  CAS  PubMed  Google Scholar 

  • Fawzy M, Khairy GM, Hesham A et al (2021) Nanoparticles as a novel and promising antiviral platform in veterinary medicine. Arch Virol 166:2673–2682

    Article  CAS  PubMed  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22:693–700

    Article  Google Scholar 

  • Haidari H, Kopecki Z, Sutton AT et al (2021) pH-responsive “smart” hydrogel for controlled delivery of silver nanoparticles to infected wounds. Antibiotics 10:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajam IA, Senevirathne A, Hewawaduge C et al (2020) Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet Res 51:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JA, Valluzzi R, Yang K et al (1999) Electrostatic multilayer deposition of a gold-dendrimer nanocomposite. Chem Mater 11:3268–3274

    Article  CAS  Google Scholar 

  • Hernández-Díaz JA, Garza-García JJ, Zamudio-Ojeda A et al (2020) Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J Sci Food Agric 101:1270–1287

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Sierra JF, Ruiz F, Pena DC et al (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 4:237–240

    Article  CAS  PubMed  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  CAS  PubMed  Google Scholar 

  • Inbaneson SJ, Ravikumar S, Manikandan N (2011) Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens. Appl Nanosci 1:231–236

    Article  CAS  Google Scholar 

  • Irshad R, Tahir K, Li B et al (2017) Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobiol B Biol 170:241–246

    Article  CAS  Google Scholar 

  • Jafari AR, Mosavi T, Mosavari N et al (2016) Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells. Int J Mycobacteriol 5:S181–S183

    Article  PubMed  Google Scholar 

  • Kar PK, Murmu S, Saha S et al (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9:e84693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katva S, Das S, Moti HS et al (2018) Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Pharmacogn Mag 13:828–833

    Google Scholar 

  • Kiruthika V, Maya S, Maneesha KS et al (2015) Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids Surf B Biointerfaces 15:1–10

    Google Scholar 

  • Liu X, Wang Z, Feng X et al (2020) Platensimycin-encapsulated poly(lactic-co-glycolic acid) and poly(amidoamine) dendrimers nanoparticles with enhanced anti-Staphylococcal activity in vivo. Bioconjug Chem 31:1425–1437

    Article  CAS  PubMed  Google Scholar 

  • Lu X-Y, Wu D-C et al (2011) Polymer nanoparticles. In: Villaverde A (ed) Progress in molecular biology and translational science, Nanoparticles in translational science and medicine, vol 104. Elsevier, Amsterdam, pp 299–323

    Google Scholar 

  • Mamun MM, Sorinolu AJ, Munir M et al (2021) Nanoantibiotics: functions and properties at the nanoscale to combat antibiotic resistance. Front Chem 9:348

    Article  CAS  Google Scholar 

  • Mignani S, El Kazzouli S, Bousmina M et al (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 35:1316–1330

    Article  CAS  Google Scholar 

  • Miller KP, Wang L, Benicewicz BC et al (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44:7787–7807

    Article  CAS  PubMed  Google Scholar 

  • Mir JF, Rubab S, Shah MA (2020a) Photo-electrochemical ability of iron oxide nanoflowers fabricated via electrochemical anodization. Chem Phys Lett 16:137088

    Article  CAS  Google Scholar 

  • Mir JF, Rubab S, Shah MA (2020b) Hematite (α-Fe2O3) nanosheets with enhanced photo-electrochemical ability fabricated via single step anodization. Chem Phys Lett 16:137584

    Article  CAS  Google Scholar 

  • Mody VV, Siwale R, Singh A et al (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed MM, Fouad SA, Elshoky HA et al (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5:23–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Morens DM, Fauci AS (2013) Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 9:e1003467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujaddidi N, Nisa S, Al Ayoubi S et al (2021) Pharmacological properties of biogenically synthesized silver nanoparticles using endophyte Bacillus cereus extract of Berberis lyceum against oxidative stress and pathogenic multidrug-resistant bacteria. Saudi J Biol Sci 28(11):6432–6440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugan K, Panneerselvam C, Subramaniam J et al (2016) Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res 23:16671–16685

    Article  CAS  Google Scholar 

  • Nadeem M, Tungmunnithum D, Hano C et al (2018) The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem Lett Rev 11:492–502

    Article  CAS  Google Scholar 

  • Nadhman A, Khan MI, Nazir S et al (2016) Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation. Int J Nanomedicine 11:2451–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahvi I, Belkahla S, Asiri SM, Rehman S (2021) Overview and prospectus of algal biogenesis of nanoparticles. In: Microbial nanotechnology: green synthesis and applications. Springer, Singapore, pp 121–134

    Chapter  Google Scholar 

  • Narayanasamy P, Switzer BL, Britigan BE (2015) Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and Mycobacteria in co-infected human macrophages. Sci Rep 5:8824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natalia AV, Ravetti S, Jose MB et al (2019) Metallic nanoparticles as a strategy for the treatment of infectious diseases. In: Holban A, Grumezescu AM (eds) Materials for biomedical engineering: bioactive materials for antimicrobial, anticancer and gene therapy. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-818435-6.00014-1

    Chapter  Google Scholar 

  • Noori F, Neree AT, Megoura M et al (2021) Insights into the metal retention role in the antibacterial behavior of montmorillonite and cellulose tissue-supported copper and silver nanoparticles. RSC Adv 11:24156–24171

    Article  CAS  Google Scholar 

  • Pandey P, Packiyaraj MS, Nigam H et al (2014) Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores. Beilstein J Nanotechnol 5:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrish CR, Holmes EC, Morens DM et al (2008) Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 72:457–470

    Article  PubMed  PubMed Central  Google Scholar 

  • Pichavant L, Carrié H, Nguyen MN et al (2016) Vancomycin functionalized nanoparticles for bactericidal biomaterial surfaces. Biomacromolecules 17:1339–1346

    Article  CAS  PubMed  Google Scholar 

  • Pickard R, Lam T, MacLennan G et al (2012) Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: a multicentre randomised controlled trial. Lancet 380:1927–1935

    Article  CAS  PubMed  Google Scholar 

  • Praba VL, Kathirvel M, Vallayyachari K et al (2013) Bactericidal effect of silver nanoparticles against Mycobacterium tuberculosis. J Bionanosci 3:282–287

    Article  CAS  Google Scholar 

  • Qasim S, Zafar A, Saif MS et al (2020) Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J Photochem Photobiol B Biol 204:111784

    Article  CAS  Google Scholar 

  • Qureshi F, Nawaz M, Rehman S, Almofty SA, Shahzad S, Nissapatorn V, Taha M (2020) Synthesis and characterization of cadmium-bismuth microspheres for the catalytic and photocatalytic degradation of organic pollutants, with antibacterial, antioxidant and cytotoxicity assay. J Photochem Photobiol B Biol 202:111723

    Article  CAS  Google Scholar 

  • Qureshi A, Blaisi NI, Abbas AA, Khan NA, Rehman S (2021) Prospectus and development of microbes mediated synthesis of nanoparticles. In: Microbial nanotechnology: green synthesis and applications. Springer, Singapore, pp 1–15

    Google Scholar 

  • Rabiee N, Bagherzadeh M, Kiani et al (2020) Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int J Nanomedicine 15:3983–3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafi MM, Ahmed KSZ, Nazeer KP et al (2015) Synthesis, characterization and magnetic properties of hematite (α-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity. Appl Nanosci 5:515–520

    Article  CAS  Google Scholar 

  • Rago I, Chandraiahgari CR, Bracciale MP et al (2014) Zinc oxide microrods and nanorods: different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Adv 4:56031–56040

    Article  CAS  Google Scholar 

  • Ravinayagam V, Rehman S (2020) Zeolitic imidazolate framework-8 (ZIF-8) doped TiZSM-5 and mesoporous carbon for antibacterial characterization. Saudi J Biol Sci 27(7):1726–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy LS, Nisha MM, Joice M et al (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol 52:1388–1397

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Al Salem Z, Al Jindan R, Hameed S (2019) Microbial natural products: exploiting microbes against drug-resistant bugs. In: Pathogenicity and drug resistance of human pathogens. Springer, Singapore, pp 393–404

    Chapter  Google Scholar 

  • Rehman S, Farooq R, Jermy R, Mousa Asiri S, Ravinayagam V, Al Jindan R, Alsalem Z, Shah MA, Reshi Z, Sabit H, Alam Khan F (2020a) A wild fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomol Ther 10(4):622

    CAS  Google Scholar 

  • Rehman S, Jermy R, Asiri SM, Shah MA, Farooq R, Ravinayagam V, Ansari MA, Alsalem Z, Al Jindan R, Reshi Z, Khan FA (2020b) Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Adv 10(53):32137–32147

    Article  CAS  Google Scholar 

  • Ritter J, Thomas L, Lederer J et al (2013) Effectiveness of a silver-alloy and hydrogel coated urinary catheter on symptomatic catheter-associated urinary tract infections. Am J Infect Control 41:S143–S144

    Article  Google Scholar 

  • Ryoo SR, Jang H, Kim KS et al (2012) Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials 33:2754–2761

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Bhattacharya J, Mukherjee A et al (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2:614–622

    Article  CAS  PubMed Central  Google Scholar 

  • Sametband M, Shukla S, Meningher T et al (2011) Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles. Med Chem Commun 2:421–423

    Article  CAS  Google Scholar 

  • Saylor C, Dadachova E, Casadevall A (2009) Monoclonal antibody-based therapies for microbial diseases. Vaccine 27:G38–G46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14:4745–4756

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Rehman S, Fatima Z, Hameed S (2020) Protein kinases as potential anticandidal drug targets. Front Biosci (Landmark Ed) 23:1412–1432

    Google Scholar 

  • Soares S, Sousa J, Pais A et al (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6:360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  PubMed  Google Scholar 

  • Souza FR, Fornasier F, Carvalho AS et al (2020) Polymer-coated gold nanoparticles and polymeric nanoparticles as nanocarrier of the BP100 antimicrobial peptide through a lung surfactant model. J Mol Liq 314:113661

    Article  CAS  Google Scholar 

  • Stan M, Popa A, Toloman et al (2015) Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts. In: Proceedings of the AIP conference, Cluj-Napoca, Romania, pp 23–25

    Google Scholar 

  • Surwade P, Luxton T, Clar J et al (2020) Impact of the changes in bacterial outer membrane structure on the anti-bacterial activity of zinc oxide nanoparticles. J Nanopart Res 22:1–8

    Article  CAS  Google Scholar 

  • Tavakoli A, Hashemzadeh MS (2020) Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods 275:113688

    Article  CAS  PubMed  Google Scholar 

  • Thanh NT, Green LA (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230

    Article  CAS  Google Scholar 

  • Usman MS, Zowalaty MEEI, Shameli K et al (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467–4479

    PubMed  PubMed Central  Google Scholar 

  • Venkataraju JL, Sharath R, Chandraprabha MN et al (2014) Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. J Biochem Technol 3:151–154

    Google Scholar 

  • Verma AK, Pandey RP, Chanchal A et al (2011a) Immuno-potentiating role of encapsulated proteins of infectious diseases in biopolymeric nanoparticles as a potential delivery system. J Biomed Nanotechnol 7:63–64

    Article  CAS  PubMed  Google Scholar 

  • Verma AK, Pandey RP, Chanchal A et al (2011b) Encapsulation of antigenic secretory proteins of Mycobacterium tuberculosis in biopolymeric nanoparticles for possible aerosol delivery system. J Bionanosci 5:88–95

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2014) Anti microbial resistance, Global Report on Surveillance. Summary. WHO Press, Geneva

    Google Scholar 

  • Xu Y, Gao C, Li X et al (2013) In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocular Pharmacol Therapeut 29:270–274

    Article  CAS  Google Scholar 

  • Yeh YC, Huang TH, Yang SC et al (2020) Nanobased drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 8:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilma AN, Singh SR, Dixit S et al (2013) Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. Int J Nanomedicine 8:2421–2432

    PubMed  PubMed Central  Google Scholar 

  • Zazo H, Colino CI, Lanao JM (2016) Current applications of nanoparticles in infectious diseases. J Control Release 224:86–102

    Article  CAS  PubMed  Google Scholar 

  • Zhang JF, Rehman S, Alghamdi T, Sheikh FA, Hassan MS, Amna T (2022) Bionanotechnology approaches to combat biofilms and drug resistance. In: Innovative approaches for nanobiotechnology in healthcare systems. IGI Global, Pennsylvania, pp 230–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zahoor, I., Mir, J.F., Shah, M.A. (2022). Advanced Nanomaterials for Infectious Diseases Therapeutics. In: Hameed, S., Rehman, S. (eds) Nanotechnology for Infectious Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-9190-4_4

Download citation

Publish with us

Policies and ethics