Skip to main content

Design and Storage of Solar Thermal Energy Production

  • Chapter
  • First Online:
Sustainable and Clean Energy Production Technologies

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 430 Accesses

Abstract

Available solar energy is in diluted form; therefore, we need a reflector to collect solar thermal energy. Parabolic dish collector is a good source for medium- and high-temperature ranges. It is used to increase the concentrated heat flux at the receiver surface. Due to the high concentration ratio, the temperature at the localized surface of the receiver is very high. Therefore, to reduce the localized point heat flux on the flat receiver surface, we disperse the concentrated flux over the entire surface using the optimization of the receiver placement. In the existing design criteria, the receiver is placed at a focal point called the focal plane, but with the help of numerical simulation of the parabolic dish collector, we can disperse the concentrated flux up to periphery. A new approach has been used to design a parabolic dish collector to increase the life of the system without sacrificing efficiency. The dish collector system has been designed for 1 kW output for 6 h a day. The projected area of the dish collector is 7.08 m2. Rim angle is varied from 15° to 90°. The concentration ratio is varied for 60, 80, 100, and 120. It is established that the rim angle of 45° is 8% more efficient than the rim angle 15°. The surface energy per unit time (4.45 kJ/s) is maximum at 45° rim angle, and surface energy per unit time (4.08 kJ/s) is minimum at rim angle 15°. When the receiver is placed at the optimal plane, the dispersion of energy density is up to the periphery, and the maximum loss is less than 2% in the case of 45° rim angle. When the rim angle is beyond 75°, the energy density is not distributed up to the periphery, and energy density is high at the center.

Solar thermal energy is stored by phase change material (PCM) of medium- and high- temperature range. The bulk temperature of NaCl is higher than that of LiBr and NaOH, but the total energy stored by NaCl is less than the LiBr and NaOH. Energy stored in NaOH is more than 90% from NaCl and 13.5% from LiBr. PCM should be selected so that it should melt completely but not reach up to the vaporization phase. Therefore, for latent heat storage, NaOH is a better option than LiBr and NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeel, W., & Zia, U. (2013). Phase change material (PCM) storage for free cooling of buildings: A review. Renewable and Sustainable Energy Reviews, 18, 607–625.

    Article  Google Scholar 

  • Agyenim, F., Hewitt, N., Eames, P., & Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14, 615–628.

    Article  CAS  Google Scholar 

  • Alayi, R., Kasaeian, A., & Atabi, F. (2019). Thermal analysis of parabolic trough concentration photovoltaic/thermal system for using in buildings. Environmental Progress and Sustainable Energy, 38, 1–12.

    Article  CAS  Google Scholar 

  • Alsagri, A. S., Alrobaian, A. A., & Almohaimeed, S. A. (2020). Concentrating solar collectors in absorption and adsorption cooling cycles: An overview. Energy Conversion and Management, 223, 113420.

    Article  CAS  Google Scholar 

  • Anderson, B. (1977). Solar energy: Fundamentals in building design. McGraw-Hill.

    Google Scholar 

  • Bahrami, M., Avargani, V. M., & Bonyadi, M. (2019). Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Applied Thermal Engineering, 151, 77–89.

    Article  Google Scholar 

  • Balaras, C. A., Grossman, G., Henning, H. M., Ferreira, C. A. I., Podesser, E., Wang, L., & Wiemken, E. (2007). Solar air conditioning in Europe: An overview. Renewable and Sustainable Energy Reviews, 11, 299–314.

    Article  CAS  Google Scholar 

  • Bansal, M., Saini, R., & Khatod, D. (2014). Optimal sizing of a solar-biogas-based cooking system for a cluster of villages. International Journal of Sustainable Energy, 33, 1017–1032.

    Article  Google Scholar 

  • Belessiotis, V., & Delyannis, E. (2011). Solar drying. Solar Energy, 85, 1665–1691.

    Article  Google Scholar 

  • Bellos, E., & Tzivanidis, C. (2019). Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science, 71, 81–117.

    Article  Google Scholar 

  • Bopche, S. B., Kumar, R., Singh, I. (2020). Development of a novel two-stage parabolic dish collector-receiver system for efficiency improvement. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–32.

    Google Scholar 

  • Cardenas, B., & Leon, N. (2013). High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and Sustainable Energy Reviews, 27, 724–737.

    Article  CAS  Google Scholar 

  • Cheng, Z. D., Zhao, X. R., He, Y. L., & Qiu, Y. (2018). A novel optical optimization model for linear Fresnel reflector concentrators. Renewable Energy, 129, 486–499.

    Article  Google Scholar 

  • Cuce, E., & Cuce, P. M. (2013). A comprehensive review on solar cookers. Applied Energy, 102, 1399–1421.

    Article  Google Scholar 

  • Elias, C. N., & Stathopoulos, V. N. (2019). A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia, 161, 385–394.

    Article  CAS  Google Scholar 

  • Esen, M., Durmuay, A., & Durmuay, A. (1998). Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy, 62, 19–28.

    Article  CAS  Google Scholar 

  • Funk, P. A. (2000). Evaluating the international standard procedure for testing solar cookers and reporting performance. Solar Energy, 68, 1–7.

    Article  Google Scholar 

  • Gadhe, P. M., Sapali, S. N., & Kulkarni, G. N. (2018). Experimental evaluation of the solar flux distribution on the flat receiver of a model heliostat system. International Journal of Renewable Energy Research-IJRER, 8, 878–887.

    Google Scholar 

  • Ghodbane, M., Boumeddane, B., Said, Z., & Bellos, E. (2019). A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Productionl, 231, 494–508.

    Article  Google Scholar 

  • He, Y. L., Wang, K., Qiu, Y., Du, B. C., Liang, Q., & Du, S. (2019). Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions. Applied Thermal Engineering, 149, 448–474.

    Article  Google Scholar 

  • Howell, J., Menguc, M., & Siegel, R. (2015). Thermal radiation heat transfer (6th ed.). CRC Press.

    Book  Google Scholar 

  • Ismail, K. A. R., Silva, D., & Maria, D. G. E. (2003). Numerical solution of the phase change problem around a horizontal cylinder in the presence of natural convection in the melt region. International Journal of Heat and Mass Transfer, 46, 1791–1799.

    Article  Google Scholar 

  • Jeter, S. M. (1986). The distribution of concentrated solar radiation in paraboloidal collectors. Journal of Solar Energy Engineering, 108, 219–225.

    Article  CAS  Google Scholar 

  • Kreider, J. F., & Kreith, F. (1975). Solar heating and cooling: Engineering, practical design, and economics. N. P..

    Google Scholar 

  • Kritchman, E., Friesem, A., & Yekutieli, G. (1979). Efficient Fresnel lens for solar concentration. Solar Energy, 22, 119–123.

    Article  Google Scholar 

  • Lecomte, D., & Mayer, D. (1985). Design method for sizing a latent heat store/heat exchanger in a thermal system. Applied Energy, 21, 55–78.

    Article  Google Scholar 

  • Li, Q., Li, C., Du, Z., Jiang, F., & Ding, Y. (2019). A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications. Applied Energy, 255, 1–37.

    Article  Google Scholar 

  • Li, Q., Zhang, Y., Wen, Z. X., & Qiu, Y. (2020). An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector. Energy Conversion and Management, 214, 112911.

    Article  Google Scholar 

  • Li, Z., Tang, D., Du, J., & Li, T. (2011). Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility. Applied Thermal Engineering, 31, 1780–1789.

    Article  Google Scholar 

  • Lin, W., Zhang, W., Ling, Z., Fang, X., & Zhang, Z. (2020). Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material. Applied Thermal Engineering, 178, 115630.

    Article  CAS  Google Scholar 

  • Malali, P. D., Chaturvedi, S. K., & Agarwala, R. (2019). Effects of circumsolar radiation on the optimal performance of a Stirling heat engine coupled with a parabolic dish solar collector. Applied Thermal Engineering, 159, 113961.

    Article  Google Scholar 

  • Malik, M., Tiwari, G. N., Kumar, A., & Sodha, M. (1982). Solar distillation: A practical study of a wide range of stills and their optimum design, construction, and performance. Pergamon Press.

    Google Scholar 

  • Manchanda, H., & Kumar, M. (2018). Study of water desalination techniques and a review on active solar distillation methods. Environmental Progress and Sustainable Energy, 37, 444–464.

    Article  CAS  Google Scholar 

  • Meinel, A. B., & Meinel, M. P. (1977). Applied solar energy: An introduction (Vol. 77). Addison-Wesley Publishing Company.

    Google Scholar 

  • Mills, K. C. (2011). Thermophysical properties of selected commercial alloys. Woodhead Publishing Limited Cambridge England.

    Google Scholar 

  • Mohammed, I. L. (2012). Design and development of a parabolic dish solar water heater. International Journal of Engineering Research and Applications, 2, 822–830.

    Google Scholar 

  • Morrison, G. L. (2001). Solar collectors. Solar energy: The state of the art (pp. 145–221). ISES.

    Google Scholar 

  • Nelson, D., Evans, D., & Bansal, R. (1975). Linear Fresnel lens concentrators. Solar Energy, 17, 285–289.

    Article  Google Scholar 

  • Norton, B. (1992). Solar energy thermal technology. Springer.

    Book  Google Scholar 

  • Oscar, A. L. N., Arturo, J. A. A., Jaramillo, O., Ramirez-Minguela, J., Castro, J. C., Cesar, E. D. A., & Sergio, C. A. (2020). A numerical analysis of the energy and entropy generation rate in a linear Fresnel reflector using computational fluid dynamics. Renewable Energy, 146, 1083–1100.

    Article  Google Scholar 

  • Pavlovic, S., Bellos, E., Le Roux, W. G., Stefanovic, V., & Tzivanidis, C. (2017). Experimental investigation and parametric analysis of a solar thermal dish collector with spiral absorber. Applied Thermal Engineering, 121, 126–135.

    Article  Google Scholar 

  • Prasad, K., & Mullick, S. (1983). Heat transfer characteristics of a solar air heater used for drying purposes. Applied Energy, 13, 83–93.

    Article  Google Scholar 

  • Qin, J., Hu, E., & Li, X. (2020). Solar aided power generation: A review. Energy and Built Environment, 1, 11–26.

    Article  Google Scholar 

  • Ravi, K. K., Krishna, C. N. V. V., & Sendhil, K. N. (2021). Solar thermal energy technologies and its applications for process heating and power generation a review. Journal of Cleaner Production, 282, 125296.

    Article  Google Scholar 

  • Reddy, K. S., & Ananthsornaraj, S. (2020). Design, development and performance investigation of solar parabolic trough collector for large-scale solar power plants. Renewable Energy, 146, 1943–1957.

    Article  Google Scholar 

  • Reddy, K. S., & Veershetty, G. (2013). Viability analysis of solar parabolic dish stand- alone power plant for indian conditions. Applied Energy, 102, 908–922.

    Article  Google Scholar 

  • Ruelas, J., Sauceda, D., Vargas, J., & Garcia, R. (2018). Thermal and concentration performance for a wide range of available offset dish solar concentrators. Applied Thermal Engineering, 144, 13–20.

    Article  Google Scholar 

  • Sar, A., & Kaygusuz, K. (2002). Thermal and heat transfer characteristics in a latent heat storage system using lauric acid. Energy Conversion and Management, 43, 2493–2507.

    Article  Google Scholar 

  • Senthil, R., & Cheralathan, M. (2017). Effect of non-uniform temperature distribution on surface absorption receiver in parabolic dish solar concentrator. Thermal Science, 21, 11–19.

    Article  Google Scholar 

  • Senthil, R., & Cheralathan, M. (2019). Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials. Journal of Energy Storage, 25, 100841.

    Article  Google Scholar 

  • Sharma, S., Micheli, L., Chang, W., Tahir, A., Reddy, K., & Mallick, T. (2017). Nano- enhanced phase change material for thermal management of BICPV. Applied Energy, 208, 719–733.

    Article  Google Scholar 

  • Shuai, Y., Xia, X. L., & Tan, H. P. (2008). Radiation performance of dish solar concentrator/cavity receiver systems. Solar Energy, 82, 13–21.

    Article  Google Scholar 

  • Sinha, R., & Gulhane, N. P. (2020). Numerical study of radiation heat loss from solar cavity receiver of parabolic dish collector. Numerical Heat Transfer, Part A: Applications, 77, 743–759.

    Article  Google Scholar 

  • Siyabi, A. I., Khanna, S., Mallick, T., & Sundaram, S. (2018). Multiple phase change material (PCM) configuration for PCM-based heat sinks-an experimental study. Energies, 11, 1629.

    Article  CAS  Google Scholar 

  • Solomon, A. D. (1979). Melt time and heat flux for a simple PCM body. Solar Energy, 22, 251–257.

    Article  Google Scholar 

  • Sukhatme, S. P., & Nayak, J. K. (2011). Solar energy principles of thermal collection and storage (3rd ed.). Tata McGraw Hill.

    Google Scholar 

  • Sup, B. A., Zainudin, M. F., Ali, T. Z. S., Bakar, R. A., Ming, G. L. (2015). Effect of rim angle to the flux distribution diameter in solar parabolic dish collector. Energy Procedia 68, 45–52. 2nd International Conference on Sustainable Energy Engineering and Application (ICSEEA) 2014 Sustainable Energy for Green Mobility.

    Google Scholar 

  • Thirugnanasambandam, M., Iniyan, S., & Goic, R. (2010). A review of solar thermal technologies. Renewable and Sustainable Energy Reviews, 14, 312–322.

    Article  CAS  Google Scholar 

  • Tian, Y., & Zhao, C. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538–553.

    Article  CAS  Google Scholar 

  • Tsekouras, P., Tzivanidis, C., & Antonopoulos, K. (2018). Optical and thermal investigation of a linear Fresnel collector with trapezoidal cavity receiver. Applied Thermal Engineering, 135, 379–388.

    Article  Google Scholar 

  • Ulanicki, B., Kahler, J., & Coulbeck, B. (2008). Modeling the efficiency and power characteristics of a pump group. Journal of Water Resources Planning and Management, 134, 88–93.

    Article  Google Scholar 

  • Wei, G., Wang, G., Xu, C., Ju, X., Xing, L., Du, X., & Yang, Y. (2018). Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 81, 1771–1786.

    Article  CAS  Google Scholar 

  • Yan, J., Li, K., Chen, H., Wang, Q., & Sun, J. (2016). Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Conversion and Management, 128, 12–19.

    Article  CAS  Google Scholar 

  • Yettou, F., Azoui, B., Malek, A., Gama, A., & Panwar, N. (2014). Solar cooker realizations in actual use: An overview. Renewable and Sustainable Energy Reviews, 37, 288–306.

    Article  Google Scholar 

  • Zhai, X. Q., Qu, M., Li, Y., & Wang, R. Z. (2011). A review for research and new design options of solar absorption cooling systems. Renewable and Sustainable Energy Reviews, 15, 4416–4423.

    Article  CAS  Google Scholar 

  • Zhu, Y., Shi, J., Li, Y., Wang, L., Huang, Q., & Xu, G. (2017). Design and thermal performances of a scalable linear Fresnel reflector solar system. Energy Conversion and Management, 146, 174–181.

    Article  Google Scholar 

  • Zivkovic, B., & Fujii, I. (2001). An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Solar Energy, 70, 51–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, B., Das, M.K., Roy, J.N. (2022). Design and Storage of Solar Thermal Energy Production. In: Pal, D.B., Jha, J.M. (eds) Sustainable and Clean Energy Production Technologies . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-9135-5_10

Download citation

Publish with us

Policies and ethics