Skip to main content

Recent Development and Future Prospects of Rigid and Flexible Dye-Sensitized Solar Cell: A Review

  • Chapter
  • First Online:
Contemporary Trends in Semiconductor Devices

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 850))

Abstract

The demand for solar-powered portable, wearable, lightweight and flexible electronic devices is increasing in the market. Hence, the development of flexible, lightweight and reliable solar cells is required to meet the market demand. Dye-sensitized solar cells (DSSCs) may be an alternative to fulfill this demand. The reported maximum power conversion efficiency (PCE) of DSSCs is ~14.1% only. Hence, there is a huge scope for increasing the PCE of DSSCs by using different nanostructure designs and materials in various layers of DSSCs. So, an extensive review of the available literature is done on recently developed fabrication and material synthesis techniques of various layers used in DSSCs for enhancing efficiency and durability. Again, the importance of using metal nanoparticles along with metal-oxide nanostructures as photoanode for enhancing light absorption and charge transport is also discussed in detail. Furthermore, the challenges currently faced by researchers in developing Flexible DSSCs (FDSSCs) are also addressed. Therefore, the main objective of this book chapter is to discuss the different materials and synthesis techniques for developing a novel photoanode layer. Another focus is to find out different synthesis techniques developed for the counter electrode (CE), electrolytes and dye layers for designing highly efficient rigid and FDSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2014) Solar cell efficiency tables (version 44). Prog Photovoltaics Res Appl 22(7):701–710

    Article  Google Scholar 

  2. Bokalic M, Topic M (2015) Spatially resolved characterization in thin-film photovoltaics. Springer, US, New York

    Book  Google Scholar 

  3. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  4. Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851

    Article  Google Scholar 

  5. Blakersa A, Zina N, McIntosh KR, Fong K (2013) High-efficiency silicon solar cells. Energy Procedia 33:1–10

    Article  Google Scholar 

  6. Green MA (2002) Third-generation photovoltaics: solar cells for 2020 and beyond. Phys E 14(1–2):65–70

    Article  Google Scholar 

  7. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AW (2018) Solar cell efficiency tables (version 51). Progr Photovolt Res Appl 26:3–12

    Article  Google Scholar 

  8. Ullattil SG, Thelappurath AV, Tadka SN, Kavil J, Vijayan BK, Periyat P (2017) A sol-solvothermal processed Black TiO2 as photoanode material in dye-sensitized solar cells. Sol Energy 155:490–495

    Article  Google Scholar 

  9. Wang D, Zhu X, Fang Y, Sun J, Zhang C, Zhang X (2017) Simultaneously composition and interface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency. Nano-Struct Nano-Objects 10:1–8

    Article  Google Scholar 

  10. Li KN, Wang YF, Xu YF, Chen HY, Su CY, Kuang DB (2013) Macroporous SnO2 synthesized via a template-assisted reflux process for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 5(11):5105–5111

    Article  Google Scholar 

  11. Xie Y, Zhou X, Mi H, Ma J, Yang J, Cheng J (2018) High-efficiency ZnO-based dye-sensitized solar cells with a 1H, 1H, 2H, 2Hperfluorodecyltriethoxysilane chain barrier for cutting on interfacial recombination. Appl Surf Sci 434:1144–1152

    Article  Google Scholar 

  12. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897

    Article  Google Scholar 

  13. Ahmad MS, Pandey AK, Rahim NA (2017) Advancements in the development of TiO2 photoanodes and its fabrication methods for dye-sensitized solar cell (DSSC) applications. Renew Sustain Energy 77:89–108

    Article  Google Scholar 

  14. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers, and electrolytes to counter electrodes. Elsevier Ltd 18(3):155–162

    Google Scholar 

  15. Ni S, Guo S, Wang D, Jiao S, Wang J, Zhang Y, Wang B, Feng P, Zhao L (2019) Modification of TiO2 nanowire arrays with Sn doping as photoanode for highly efficient dye-sensitized solar cells. Curr Comput-Aided Drug Des 9(2):113

    Google Scholar 

  16. Sim YH, Yun MJ, Cha SI, Seo SH, Lee DY (2018) Improvement in energy conversion efficiency by modification of photon distribution within the photoanode of dye-sensitized solar cells. ACS Omega 3(1):698–705

    Article  Google Scholar 

  17. Liu C, Lia T, Zhanga Y, Konga T, Zhuang T, Cui Y, Fang M, Zhu W, Wu Z, Li C (2019) Silver nanoparticle modified TiO2 nanotubes with enhanced the efficiency of dye-sensitized solar cells. Microporous Mesoporous Mater 287:228–233

    Article  Google Scholar 

  18. Mariani P, Vesce L, Di Carlo A (2015) The role of printing techniques for large-area dye-sensitized solar cells. Semicond Sci Technol 30:104003

    Google Scholar 

  19. Lee H, Hwang D, Jo SM, Kim D, Seo Y, Kim DY (2012) Low-temperature fabrication of TiO2 electrodes for flexible dye-sensitized solar cells using an electrospray process. ACS Appl Mater Interfaces 4(6):3308–3315

    Article  Google Scholar 

  20. Song L, Du P, Shao X, Cao H, Hui Q, Xiong J (2013) Effects of hydrochloric acid treatment of TiO2 nanoparticles/nanofibers bilayer film on the photovoltaic properties of dye-sensitized solar cells. Mater Res Bull 48(3):978–982

    Article  Google Scholar 

  21. Bahramian A (2013) High conversion efficiency of dye-sensitized solar cells based on coral-like TiO2 nanostructured films: synthesis and physical characterization. Ind Eng Chem 52(42):14837–14846

    Article  Google Scholar 

  22. Wu HP, Lan CM, Hu JY, Huang WK, Shiu JW, Lan ZJ, Tsai CM, Su CH, Guang Diau EW (2013) Hybrid Titania photoanodes with a nanostructured multi-layer configuration for highly efficient dye-sensitized solar cells. J Phys Chem Lett 4(9):1570–1577

    Article  Google Scholar 

  23. Bao ZQ, Xie H, Zhu Q, Qian J, Ruana P, Zhou X (2013) Microsphere assembly of TiO2 with tube-in-tube nanostructures: anisotropic etching and photovoltaic enhancement. Cryst Eng Comm 15:8972–8978

    Article  Google Scholar 

  24. Mir N, Lee K, Paramasivam I, Schmuki P (2012) Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells. Chem Eur J 18(38):11862–11866

    Article  Google Scholar 

  25. Chen HY, Zhang TL, Fan J, Kuang DB, Su CY (2013) Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 5(18):9205–9211

    Article  Google Scholar 

  26. Kumar EN, Jose R, Archana PS, Vijila C, Yusoffb MM, Ramakrishna S (2012) High performance dye-sensitized solar cells with record open-circuit voltage using tin oxide nanoflowers developed by electrospinning. Energy Environ Sci 5:5401–5407

    Article  Google Scholar 

  27. Huo J, Hu Y, Jiang H, Huang W, Li Y, Shao W, Li C (2013) Mixed solvents assisted flame spray pyrolysis synthesis of TiO2 hierarchically porous hollow spheres for dye-sensitized solar cells. Ind Eng Chem Res 52(32):11029–11035

    Article  Google Scholar 

  28. Son HJ, Prasittichai C, Mondloch JE, Luo L, Wu J, Kim DW, Farha OK, Hupp JT (2013) Dye Stabilization and enhanced photoelectrode wettability in water based dye-sensitized solar cells through post-assembly atomic layer deposition of TiO2. J Am Chem Soc 135(31):11529–11532

    Article  Google Scholar 

  29. Ye M, Xin X, Lin C, Lin Z (2011) High-efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett 11(8):3214–3220

    Article  Google Scholar 

  30. Sharma K, Sharma V, Sharma (2018) Dye-Sensitized solar cells: fundamentals and current status. NRL 13:381

    Google Scholar 

  31. Wu J, Xiao Y, Tang Q, Yue G, Lin J, Huang M, Huang Y, Fan L, Lan Z, Yin S (2012) A large-area light-weight dye-sensitized solar cell based on all titanium substrates with an efficiency of 6.69% outdoors. Adv Mater 24:1884–1888

    Article  Google Scholar 

  32. Wu J, Li Y, Tang Q, Yue G, Lin J, Huang M, Meng L (2014) Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci Rep 4:4028

    Article  Google Scholar 

  33. Liu D, Zhao M, Li Y, Bian Z, Zhang L, Shang Y, Xia X, Zhang S, Yun D, Liu Z (2012) Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 6(12):11027–11034

    Article  Google Scholar 

  34. Tang Z, Wun J, Zheng M, Huo J, Lan Z (2013) A microporous platinum counter electrode used in dye-sensitized solar cells. NANO 2(5):622–627

    Google Scholar 

  35. Kakroo S, Suran K, Bhattachary B (2019) Counter electrode in polymer-electrolyte-based DSSC: platinum versus electrodeposited MnO2. Macromol Symp 388(1):1900011

    Article  Google Scholar 

  36. Shimada K, Toyoda T Shahiduzzaman Md, Taima T (2019) Platinum counter electrodes for dye-sensitized solar cells prepared by a one-step dipping process. Jpn J Appl Phys 58(12):124001–124004

    Google Scholar 

  37. Ouyang J (2019) Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. Nano Mater Sci 1(2):77–90

    Article  Google Scholar 

  38. Zhang S, Jin J, Li D, Fu Z, Gao S, Cheng S, Yu X, Xiong Y (2019) Increased power conversion efficiency of dye-sensitized solar cells with counter electrodes based on carbon materials. RSC Adv 9:22092–22100

    Article  Google Scholar 

  39. Zatirostami A (2020) Electro-deposited SnSe on ITO: a low-cost and high-performance counter electrode for DSSCs. J Alloys Compd 844(5):156151

    Google Scholar 

  40. Sarkera S, Seoa HW, Jina YK, Azizb MdA, Kima DM (2019) Transparent conducting oxides and their performance as substrates for counter electrodes of dye-sensitized solar cells. Mater Sci Semicond Process 93:28–35

    Article  Google Scholar 

  41. Qing FuN, Xiao XR, Zhou XW, Zhang JB, Lin Y (2012) Electrodeposition of platinum on plastic substrates as counter electrodes for flexible dye-sensitized solar cells. J Phys Chem C 116(4):2850–2857

    Article  Google Scholar 

  42. Su H, Zhang M, Chang YH, Zhai P, Hau NY, Huang YT, Liu C, Soh AK, Feng SP (2014) Highly conductive and low cost Ni-PET flexible substrate for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 6(8):5577–5584

    Article  Google Scholar 

  43. Kim SS, Nah YC, Noh YY, Jo J, Kim DY (2005) Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cell. Electrochim Acta 51(18):3814–3819

    Article  Google Scholar 

  44. Popoola IK, Gondal MA, Ghamdi JM, Qahtan TF (2018) Photofabrication of highly transparent platinum counter electrodes at ambient temperature for bifacial dye sensitized solar cells. Sci Rep 8:12864

    Article  Google Scholar 

  45. Liu J, Yi L, Yong S, Arumugam S, Beeby S (2019) Flexible printed monolithic structured solid-state dye sensitized solar cells on woven glass fibre textile for wearable energy harvesting applications Sci Rep 9:1362

    Google Scholar 

  46. Xue Z, Jiang C, Wang L, Liu W, Liu B (2013) Fabrication of flexible plastic solid-state dye-sensitized solar cells using low temperature techniques. J Phys Chem C 118(30):16352–16357

    Article  Google Scholar 

  47. Pringle JM, Armel V, Mac Farlane DR (2010) Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem Commun 46:5367–5369

    Article  Google Scholar 

  48. Vyas N, Charbonneau C, Carnie M, Worsley D, Watson T (2013) An inorganic/organic hybrid coating for low cost metal mounted dye sensitized solar cells. ECS Trans 53(24):29–37

    Article  Google Scholar 

  49. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Gratzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153(12):A2255–A2261

    Article  Google Scholar 

  50. Ahmad S, Yum JH, Xianxi Z, Gratzel M, Butt HJ, Nazeeruddin MK (2010) Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. J Mater Chem 20:1654–1658

    Article  Google Scholar 

  51. Jia J, Wu J, Dong J, Bao Q, Fan L, Lin J, Hu L, Daib S (2017) Influence of deposition voltage of cobalt diselenide preparation on the film quality and the performance of dye-sensitized solar cells. Sol Energy 151(15):61–67

    Article  Google Scholar 

  52. Wu M, Wang Y, Lin X, Guo W, Wu K, Lin Y, Guo H, Ma T (2013) TiC/Pt composite catalyst as counter electrode for dye-sensitized solar cells with long-term stability and high efficiency. J Mater Chem A 1:9672–9679

    Article  Google Scholar 

  53. Zhou R, Guo W, Yu R, Pan C (2015) Highly flexible, conductive and catalytic Pt networks as transparent counter electrode for wearable dye-sensitized solar cells. J Mater Chem A 3:23028–23034

    Article  Google Scholar 

  54. Mei X, Cho SJ, Fan B, Ouyang J (2010) High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21(39):395202

    Google Scholar 

  55. Patil DS, Sonigara KK, Jadhav MM, Avhad KC, Sharma S, Soni SS, Sekar N (2018) Effect of structural manipulation in hetero-tri-aryl amine donor-based D-A` -p-A sensitizer in dye-sensitized solar cells. New J Chem 42:4361–4371

    Article  Google Scholar 

  56. Zakeeruddin SM, Gratzel M (2009) Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells. Adv Funct Mater 19(14):2187–2202

    Article  Google Scholar 

  57. Hilmy NIMF, Yahya WZN, Kurnia KA (2020) Eutectic ionic liquids as potential electrolytes in dye-sensitized solar cells: physicochemical and conductivity studies. J Mol Liq 320:114381

    Google Scholar 

  58. Bidikoudi M, Zubeirb LF, Falaras P (2014) Low viscosity highly conductive ionic liquid blends for redox-active electrolytes in efficient dye-sensitized solar cells. J Mater Chem A 2:15326–15336

    Article  Google Scholar 

  59. Yu Q, Wang Y, Yi Z, Zu N, Zhang J, Zhang M, Wang P (2010) High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and the surface states. ACS Nano 4(10):6032–6038

    Article  Google Scholar 

  60. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MdK, Diau EWG, Yeh CY, Zakeeruddin SM, Gratzel M (2011) Porphyrin-sensitized solar cells with Cobalt (II/III)- based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  Google Scholar 

  61. Wang ZS, Sayama K, Sugihara H (2005) Efficient Eosin Y dye-sensitized solar cell containing Br-/Br 3-electrolyte. J Phys Chem B 109(47):22449–22455

    Article  Google Scholar 

  62. Kloo L (2014) Iodine in dye-sensitized solar cells. In: Kaiho T (ed) Iodine chemistry and applications, 1st edn. Wiley, New York, pp 501–502

    Google Scholar 

  63. Garcia-Salinas MJ, Ariza MJ (2019) Optimizing a simple natural dye production method for dye-sensitized solar cells: examples for Betalain (Bougainvillea and beetroot extracts) and anthocyanin dyes. Appl Sci 9(12):2515

    Article  Google Scholar 

  64. Takashi F, Hiromi F, Ki O, Nobuko OK, Kazuyuki K, Kazuhiro S, Hideki S (2012) Cyclometalated ruthenium (II) complexes as near-IR sensitizers for high efficiency dye-sensitized solar cells. Angew Chem Int Ed 51(30):7628–7531

    Google Scholar 

  65. Richhariya G, Kumar A (2021) Performance evaluation of mixed synthetic organic dye as sensitizer-based dye sensitized solar cell. Opt Mater 111:110658

    Google Scholar 

  66. Cole JM, Gong Y, Cree-Grey JM, Evans PJ, Holt SA (2018) Modulation of N3 and N719 dye TiO2 interfacial structures in dye-sensitized solar cells as influenced by dye counter ions, dye deprotonation levels and sensitizing solvent. ACS Appl Energy Mater 1(6):2821–2831

    Article  Google Scholar 

  67. Ayalew WA, Ayele DW (2016) Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. J Sci Adv Mater 1(4):488–494

    Google Scholar 

  68. Nazeeruddin MK, Kay A, Rodicio I, Baker RH, Miiller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis - XzBis (2,2′-bi-pyridyl-4,4′-dicarboxylate), ruthenium (11) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115(14):6382–6390

    Article  Google Scholar 

  69. Huang Y, Chen W, Zhang XX, Ghadari R, Fang XQ, Yu T, Kong FT (2018) Ruthenium complexes sensitizers with phenyl-based bipyridine anchoring ligands for efficiently dye-sensitized solar cells. J Mater Chem C 6:9445–9452

    Article  Google Scholar 

  70. Dongshe Z, Suzanne ML, Jonathan AD, Jason LA, June L, Jeanne LMH (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A Chem 195(1):72–80

    Article  Google Scholar 

  71. Kuo SY, Yang JF, Lai FI (2014) Improved dye-sensitized solar cell with a ZnO nano tree photoanode by hydrothermal method. Nanoscale Res Lett 9:206

    Article  Google Scholar 

  72. Sanjay AP, Isaivani I, Deepa K, Madhavan J, Senthil S (2019) The preparation of dye-sensitized solar cells using natural dyes extracted from Phytolacca icosandra and Phyllanthus reticulatus with ZnO as Photoanode. Mater Lett 244:142–146

    Article  Google Scholar 

  73. Yeoh ME, Chan KY (2019) Efficiency enhancement in dye-sensitized solar cells with ZnO and TiO2 blocking layers. J Electron Mater 48:4342–4350

    Article  Google Scholar 

  74. Kumara GRA, Deshapriya U, Ranasinghe CSK, Jayaweera EN, Rajapakse RMG (2018) Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye. J Semicond 39(3):033005

    Google Scholar 

  75. Ko SW, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ (2011) Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett 11(2):666–671

    Article  Google Scholar 

  76. Zhang Z, Li X, Wang C, Liu LWY, Shao C (2009) ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem 113(45):19397–19403

    Google Scholar 

  77. Kim D, Hong J M, Lee B H, Kim D Y (2007) Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats. Appl Phys Lett 91:163109

    Google Scholar 

  78. Umar A, Akhtar MS, Almas T, Ibrahim AA, Al AMS, Masuda Y, Rahman QI, Baskoutas S (2019) Direct growth of flower-shaped ZnO nanostructures on FTO substrate for dye-sensitized solar cells. Curr Comput-Aided Drug Des 9(8):405

    Google Scholar 

  79. Uthirakumar AP (2011) Fabrication of ZnO based dye-sensitized solar cells, solar cells—dye-sensitized devices. Prof. Leonid A. Kosyachenko (ed). InTech, 435–456

    Google Scholar 

  80. Hu J, Cheng J, Tong S, Zhao L, Duan J, Yang Y (2016) Dye-sensitized solar cells based on P25 nanoparticles/ TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film. J Mater Sci Mater Electron 27:5362–5370

    Article  Google Scholar 

  81. Suriani AB, Mohamed A, Mamat MH, Hashim N, Isa IM, Malek MF, Kairi MI, Mohamed AR, Ahmad MK (2018) Improving the photovoltaic perfor-mance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with a hyperbranched surfactant. Optik 158:522–534

    Article  Google Scholar 

  82. Ahmad MK, Soon CF, Nafarizal N, Suriani AB, Mohamed A, Mamat MH, Malek MF, Shimomura M, Murakami K (2016) Effect of heat treatment to the rutile based dye-sensitized solar cell. Optik 127(8):4076–4079

    Article  Google Scholar 

  83. Zhang D, Yoshida T, Oekermann T, Furuta K, Minoura H (2006) Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Adv Funct Mater 16(9):1228–1234

    Article  Google Scholar 

  84. Faisal A (2014) Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. J Mater Sci Mater Electron 26(1):317–321

    Article  Google Scholar 

  85. Ahmad MK, Murakami K (2015) Rutile-phased TiO2 nanorods/nanoflowers based dye-sensitized solar cell. Appl Mech Mater 773–774:725–728

    Article  Google Scholar 

  86. Wang J, Qu S, Zhong Z, Wang S, Liu K, Hu A (2014) Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells. Prog Nat Sci Mater Int 24(6):588–592

    Article  Google Scholar 

  87. Hafez H, Lan Z, Li Q, Wu J (2010) High efficiency dye-sensitized solar cell based on novel TiO2 nanorods/nanoparticle bilayer electrode. Nanotechnol Sci Appl 3:45–51

    Article  Google Scholar 

  88. Shao F, Sun J, Gao L, Chen J, Yang S (2014) Electrophoretic deposition of TiO2 nanorods for low-temperature dye-sensitized solar cells. RSC Adv 4:7805–7810

    Article  Google Scholar 

  89. Chen J, Li C, Xu F, Zhou Y, Lei W, Sunb L, Chen J, YZ (2012) Hollow SnO2 microspheres for high-efficiency bilayered dye-sensitized solar cell. RSC Adv 2(19):7384–7387

    Article  Google Scholar 

  90. Roy P, Albu SP, Schmuki P (2010) TiO2 nanotubes in dye-sensitized solar cells: higher efficiencies by well-defined tube tops. Electrochem Commun 12(7):949–951

    Article  Google Scholar 

  91. Cao Y, Li Z, Wang Y, Zhang T, Li Y, Liu X, Li F (2016) Influence of TiO2 nanorod arrays on the bilayered photoanode for dye-sensitized solar cells. J Electron Mat 45(10):4989–4998

    Article  Google Scholar 

  92. Biraj S, Ngangbam C, Lenka TR (2018) Enhancement of broad light detection based on annealed Al-NPs assisted TiO2-NWs deposited on p-Si by GLAD technique. IEEE Trans Nanotechnol 17(2):285–292

    Article  Google Scholar 

  93. Wu W, Liao J, Chen H, Yu X, Su C, Kuang D (2012) Dye-sensitized solar cells based on a double-layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. J Mater Chem 22(34):18057–18062

    Article  Google Scholar 

  94. Biraj S, Ngangbam C, Lenka TR (2017) Plasmon-sensitized optoelectronic properties of Au nanoparticle-assisted vertically aligned TiO2 nanowires by GLAD technique. IEEE Trans Electron Dev 64(3):1127–1133

    Article  Google Scholar 

  95. Hua B, Lin Q, Zhang Q, Fan Z (2013) Efficient photon management with nanostructures for photovoltaics. Nanoscale 5(1):6627–6640

    Article  Google Scholar 

  96. Zhu J, Yu Z, Fan S, Cu Y (2010) Nanostructured photon management for high-performance solar cells. Mater Sci Eng R Rep 70:330–340

    Article  Google Scholar 

  97. He XL, Yang GJ, Li CJ, Liu M, Fan SQ (2015) Failure mechanism for flexible dye-sensitized solar cells under repeated outward bending: Cracking and spalling off of nano-porous titanium dioxide film. J Power Sourc 280:182–189

    Article  Google Scholar 

  98. Guo X, Xu Z, Huang J, Zhang Y, Liu X, Guo W (2019) Photoelectrochromic smart windows powered by flexible dye-sensitized solar cell using CuS mesh as a counter electrode. Mater Lett 244(1):92–95

    Article  Google Scholar 

  99. Liang J, Yang J, Zhang G, Sun W (2013) Flexible fiber-type dye-sensitized solar cells based on highly ordered TiO2 nanotube arrays. Electrochem commun 37:80–83

    Article  Google Scholar 

  100. Hong CK, Jung YH, Kim HJ, Park KH (2014) Electrochemical properties of TiO2 nanoparticle/nanorod composite photoanode for dye-sensitized solar cells. Curr Appl Phys 14(3):294–299

    Article  Google Scholar 

  101. Kim YG, Shim CH, Kim DH, Lee HJ (2012) Fabrication of transparent conductive oxide-less dye-sensitized solar cells consisting of Ti electrodes by an electron-beam evaporation process. Thin Solid Films 520(6):2257–2260

    Article  Google Scholar 

  102. Manca M, Malara F, Martiradonna L, Marco LD, Giannuzzi R, Cingolani R, Gigli G (2010) Charge recombination reduction in dye-sensitized solar cells by means of an electron beam-deposited TiO2 buffer layer between conductive glass and photo-electrode. Thin Solid Films 518(23):7147–7151

    Article  Google Scholar 

  103. Kiema G, Colgan M, Brett M (2005) Dye-sensitized solar cells incorporating obliquely deposited titanium oxide layers. Sol Energy Mater Sol Cells 85(3):321–331

    Article  Google Scholar 

  104. Wong MS, Lee MF, Chen CL, Huang CH (2010) Vapor deposited sculptured nanoporous titania films by glancing angle deposition for efficiency enhancement in dye-sensitized solar cells. Thin Solid Films 519(5):1717–1722

    Article  Google Scholar 

  105. Yang HY, Lee MF, Huang CH, Lo YS, Chen YJ, Wong MS (2009) Glancing angle deposited titania films for dye-sensitized solar cells. Thin Solid Films 518(5):1590–1594

    Article  Google Scholar 

  106. Seo YG, Kim MA, Lee H, Lee W (2011) Solution-processed thin films of non-aggregated TiO2 nanoparticles prepared by mild solvothermal treatment. Sol Energy Mater Sol Cells 95(1):332–335

    Article  Google Scholar 

  107. Chena BL, Hua H, Tai QD, Zhang NG, Guo F, Sebo B, Liu W, Yuan JK, Wang JB, Zhao XZ (2012) An inverted fabrication method towards a flexible dye-sensitized solar cell based on a free-standing TiO2 nanowires membrane. Electrochim Acta 59(1):581–586

    Article  Google Scholar 

  108. Wang H, Li H, Wang J, Wu J (2012) High aspect-ratio transparent highly ordered titanium dioxide nanotube arrays and their performance in dye sensitized solar cells. Mater Lett 80(1):99–102

    Article  Google Scholar 

  109. Meng L, Ren T, Li C (2010) The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC. Appl Surf Sci 256(11):3676–3682

    Article  Google Scholar 

  110. Junga WH, Kwaka NS, Hwanga TS, YiKB, (2012) Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl Surf Sci 261:343–352

    Article  Google Scholar 

  111. Liu W, Lu H, Zhang M, Guo M (2015) Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells. Appl Surf Sci 347:214–223

    Article  Google Scholar 

  112. Cao L, Wu C, Hu Q, Jin T, Chi B, Pu J, Jian L (2013) Double-layer structure photoanode with TiO2 nanotubes and nanoparticles for dye-sensitized solar cells. J Am Ceram Soc 96(2):549–554

    Article  Google Scholar 

  113. Klein M, Szkoda M, Sawczak M, Cenian A, Lisowska-Oleksiak A, Siuzdak K (2017) Flexible dye-sensitized solar cells based on Ti/TiO2 nanotubes photoanode and Pt-free and TCO-free counter electrode system. Solid State Ion 302:192–196

    Article  Google Scholar 

  114. Li Y, Wang H, Feng Q, Zhou G, Wang ZS (2013) Gold nanoparticles inlaid TiO2 photoanode: a superior candidate for high efficiency dye-sensitized solar cells. Energy Environ Sci 6(7):2156–2165

    Article  Google Scholar 

  115. Kar P, Maji TK, Sarkar PK, Sardar S, Pal SK (2016) Direct observation of electronic transition-plasmon coupling for enhanced electron injection in dye-sensitized solar cells. RSC Adv 6(101):98753–98760

    Article  Google Scholar 

  116. Wu WY, Hsu CF, Wu MJ, Chen CN, Huang JJ (2017) Ag-TiO2 composite photoelectrode for dye-sensitized solar cell. Appl Phys A 123(357):1–8

    Google Scholar 

  117. Han SH, Rho WY, Jun BH (2019) Au-nanoparticle-embedded open-ended free-standing TiO2 nanotube arrays in dye-sensitized solar cells for better electron generation and electron transport. ACS Omega 4(23):20346–20352

    Article  Google Scholar 

  118. Nien YH, Chen HH, Hsu HH, Rangasamy M, Hu GM, Yong ZR, Kuo PY, Chou JC, Lai CH, Ko CC, Chang JX (2020) Study of how photoelectrodes modified by TiO2/Ag nanofibers in various structures enhance the efficiency of dye-sensitized solar cells under low illumination. Energies 13:2248

    Article  Google Scholar 

  119. Kim HS, Chun MH, Suh JS, Jun BH, Rho WY (2017) Dual functionalized free-standing TiO2 nanotube arrays coated with Ag nanoparticles and carbon materials for dye-sensitized solar cells. Appl Sci 7(6):576

    Article  Google Scholar 

  120. Garmaroudi ZA, Mohammadi MR (2016) Plasmonic effects of infiltrated silver nanoparticles inside TiO2 film: enhanced photovoltaic performance in DSSCs. J Am Ceram Soc 99(1):167–173

    Article  Google Scholar 

  121. Gupta S, Navaraj, WT, Lorenzelli L, Dahiya R (2018) Ultra-thin chips for high-performance flexible electronics. npj Flex Electron 2(8):1–17

    Google Scholar 

  122. Wu C, Chen B, Zheng X, Priya S (2016) Scaling of the flexible dye-sensitized solar cell module. Sol Energy Mater Sol Cells 157:438–446

    Article  Google Scholar 

  123. Kim MS, Chun DM, Choi JO, Lee JC, Kim YH, Kim KS, Lee CS, Ahn SH (2012) Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS). J Nanosci Nanotechnol 12(4):3384–3388

    Article  Google Scholar 

  124. Chen LC, Ke CR, Hon MH, Ting JM (2015) Electrophoretic deposition of TiO2 coatings for use in all-plastic flexible dye-sensitized solar cells. Surf Coat Technol 284(25):51–56

    Article  Google Scholar 

  125. Han Q, Liu S, Liu Y, Jin LD, Cheng S, Xiong Y (2020) Flexible counter electrodes with a composite carbon/metal nanowire/polymer structure for use in dye-sensitized solar cells. Sol Energy 208(18):469–479

    Article  Google Scholar 

  126. Jen HP, Lin MH, Li LL, Wu HP, Huang WK, Cheng PJ, Diau EWG (2013) High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays. ACS Appl Mater Interfaces 5(20):10098–10104

    Article  Google Scholar 

  127. Han HG, Weerasinghe HC, Kim KM, Kim JS, Cheng YB, Jones DJ, Holmes AB, Kwon TH (2015) Ultrafast fabrication of flexible dye-sensitized solar cells by ultrasonic spray-coating technology. Sci Rep 5(14645):1–9

    Google Scholar 

  128. Luo D, Liu B, Fujishima A, Nakata K (2019) TiO2 nanotube arrays formed on Ti meshes with periodically arranged holes for flexible dye-sensitized solar cells ACS appl. Nano Mater 2(6):3943–3950

    Google Scholar 

  129. Liang J, Zhang G, Sun W, Dong (2015) High efficiency flexible fiber-type dye-sensitized solar cells with multi-working electrodes. Nano Energy 12:501–509

    Article  Google Scholar 

  130. Yue G, Liu X, Chen Y, Huo J, Zheng, (2018) H Improvement in the photoelectric conversion efficiency for the flexible fibrous dye-sensitized solar cells. Nanoscale Res Lett 13(188):1–10

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Electronics and Communication Engineering, Manipur Technical University (MTU), Imphal for providing research facilities.

Funding

The authors would like to thank Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for funding this work under File no: ECR/2018/000834.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.S., Shougaijam, B. (2022). Recent Development and Future Prospects of Rigid and Flexible Dye-Sensitized Solar Cell: A Review. In: Goswami, R., Saha, R. (eds) Contemporary Trends in Semiconductor Devices. Lecture Notes in Electrical Engineering, vol 850. Springer, Singapore. https://doi.org/10.1007/978-981-16-9124-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9124-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9123-2

  • Online ISBN: 978-981-16-9124-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics