Skip to main content

Knowledge Gained from Co-exposure Studies of Nanomaterials and Chemicals

  • Chapter
  • First Online:
Advances in Toxicology and Risk Assessment of Nanomaterials and Emerging Contaminants
  • 579 Accesses

Abstract

With the rapid development of nanotechnology, engineered nanomaterials have been extensively produced and used in diverse fields, resulting in an inevitable release of engineered nanomaterials into the natural environment where various chemicals including organic pollutants and toxic metals are widely detected. Possible interactions between engineered nanomaterials and chemicals have aroused public concerns in recent years. The combined toxicity of engineered nanomaterials and chemicals is closely species-specific, related to environmental media and can be either synergistic, additive or antagonistic. The “Trojan horse” type pathway has been identified as an important mechanism for the synergistic, additive or antagonistic effects of engineered nanomaterials and chemicals on organisms, whereas complexation might be related to antagonistic effects. Further studies should be conducted in the future to fully understand the mixture effects of engineered nanomaterials and chemicals in the environment and better assess the potential risks of co-exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahamed M, Akhtar MJ, Alaizeri ZM et al (2020) TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. Environ Sci Pollut Res 27:10425–10435

    Article  CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Alhadlaq HA (2019) Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicol in Vitro 57:18–27

    Article  CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Khan MAM et al (2021) Co-exposure of Bi2O3 nanoparticles and bezo[α]pyrene-enhanced in vitro cytotoxicity of mouse spermatogonia cells. Environ Sci Pollut Res 28:17109–17118

    Article  CAS  Google Scholar 

  • Alonso-Magdalena P, Ropero AB, Soriano S et al (2012) Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol 355:201–207

    Article  CAS  Google Scholar 

  • Asweto CO, Hu H, Liang S et al (2018) Gene profiles to characterize the combined toxicity induced by low level co-exposure of silica nanoparticles and benzo[α]pyrene using whole genome microarrays in zebrafish embryos. Ecotoxicol Environ Saf 163:47–55

    Article  CAS  Google Scholar 

  • Azari MR, Mohammadian Y, Pourahmad J et al (2020) Additive toxicity of co-exposure to pristine multi-walled carbon nanotubes and benzo α pyrene in lung cells. Environ Res 183:109219

    Google Scholar 

  • Azimzada A, Farner JM, Hadioui M et al (2020) Release of TiO2 nanoparticles from painted surfaces in cold climates: characterization using a high sensitivity single-particle ICP-MS. Environ Sci: Nano 7:139–148

    CAS  Google Scholar 

  • Balbi T, Smerilli A, Fabri R et al (2014) Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci Total Environ 493:355–364

    Article  CAS  Google Scholar 

  • Banni M, Sforzini S, Balbi T et al (2016) Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: a transcriptomic and immunohistochemical study. Environ Res 145:135–144

    Article  CAS  Google Scholar 

  • Barranger A, Langan LM, Sharma V et al (2019) Antagonistic interactions between benzo[α]pyrene and fullerene (C60) in toxicological response of marine mussels. Nanomaterials 9:987

    Article  CAS  Google Scholar 

  • Botta C, Labille J, Auffan M et al (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1550

    Article  CAS  Google Scholar 

  • Campos-Garcia J, Martinez DST, Alves OL et al (2015) Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity. Ecotoxicol Environ Saf 111:131–137

    Article  CAS  Google Scholar 

  • Cao X, Ma C, Chen F et al (2021) New insights into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. J Hazard Mater 410:124959

    Google Scholar 

  • Chao S, Huang CP, Chen P et al (2018) Uptake of BDE-209 on zebrafish embryos as affected by SiO2 nanoparticles. Chemosphere 205:570–578

    Article  CAS  Google Scholar 

  • Chen Y, Li J, Zhou Q et al (2021) Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis. Ecotoxicol Environ Saf 208:111487

    Google Scholar 

  • Cotena M, Auffan M, Tassistro V et al (2021) In vitro co-exposure to CeO2 nanomaterials from diesel engine exhaust and benzo(α)pyrene induces additive DNA damage in sperm and cumulus cells but not in oocytes. Nanomaterials 11:478

    Article  CAS  Google Scholar 

  • De Melo CB, Coa F, Alves OL et al (2019) Co-exposure of graphene oxide with trace elements: effects on acute ecotoxicity and routine metabolism in Palaemon pandaliformis (shrimp). Chemosphere 223:157–164

    Article  Google Scholar 

  • Delfosse V, Grimaldi M, Pons J et al (2012) Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proc Natl Acad Sci USA 109:14930–14935

    Article  CAS  Google Scholar 

  • Deng R, Gao X, Hou J et al (2020) Multi-omics analyses reveal molecular mechanisms for the antagonistic toxicity of carbon nanotubes and ciprofloxacin to Escherichia coli. Sci Total Environ 726:138288

    Google Scholar 

  • Deng H, McShan D, Zhang Y et al (2016) Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50:8840–8848

    Article  CAS  Google Scholar 

  • Deng R, Yang K, Lin D (2021) Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis. Environ Pollut 270:116071

    Google Scholar 

  • Deng R, Zhu Y, Hou J et al (2019) Antagonistic toxicity of carbon nanotubes and pentachlorophenol to Escherichia coli: physiological and transcriptional responses. Carbon 145:658–667

    Article  CAS  Google Scholar 

  • Ding T, Li W, Li J (2019) Influence of multi-walled carbon nanotubes on the toxicity and removal of carbamazepine in diatom Navicula sp. Sci Total Environ 697:134104

    Google Scholar 

  • Du J, Cai J, Wang S et al (2017) Oxidative stress and apoptosis to zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate (PFOS) and ZnO nanoparticles. Int J Occup Med Environ Health 30:213–229

    Google Scholar 

  • Du J, Tang J, Xu S et al (2018) Parental transfer of perfluorooctane sulfonate and ZnO nanoparticles chronic co-exposure and inhibition of growth in F1 offspring. Regul Toxicol Pharmacol 98:41–49

    Article  CAS  Google Scholar 

  • Du J, Wang S, You H et al (2016) Effects of ZnO nanoparticles on perfluorooctane sulfonate induced thyroid-disrupting on zebrafish larvae. J Environ Sci 47:153–164

    Article  Google Scholar 

  • Duan J, Yu Y, Li Y et al (2016) Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[α]pyrene in zebrafish (Danio rerio) embryos. Chemosphere 151:152–162

    Article  CAS  Google Scholar 

  • Fang Q, Shi Q, Guo Y et al (2016) Enhanced bioconcentration of bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Sci Technol 50:1005–1013

    Article  CAS  Google Scholar 

  • Fang Q, Shi X, Zhang L et al (2015) Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904

    Article  CAS  Google Scholar 

  • Farkas J, Bergum S, Nilsen EW et al (2015) The impact of TiO2 nanoparticles on uptake and toxicity of benzo(α)pyrene in the blue mussel (Mytilus edulis). Sci Total Environ 511:469–476

    Article  CAS  Google Scholar 

  • Ferreira JLR, Lonne MN, Franca TA et al (2014) Co-exposure of the organic nanomaterial fullerene C60 with benzo[α]pyrene in Danio rerio (zebrafish) hepatocytes: evidence of toxicological interactions. Aquat Toxicol 147:76–83

    Article  CAS  Google Scholar 

  • Fu J, Guo Y, Yang L et al (2020) Nano-TiO2 enhanced bioaccumulation and developmental neurotoxicity of bisphenol A in zebrafish larvae. Environ Res 187:109682

    Google Scholar 

  • Garcia-Gomez C, Babin M, Garcia S et al (2019) Joint effects of zinc oxide nanoparticles and chlorpyrifos on the reproduction and cellular stress responses of the earthworm Eisenia andrei. Sci Total Environ 688:199–207

    Article  CAS  Google Scholar 

  • Ginzburg AL, Truong L, Tanguay RL et al (2018) Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS Nano 12:5312–5322

    Article  CAS  Google Scholar 

  • Gnatyshyna L, Falfushynska H, Horyn O et al (2019) Biochemical responses of freshwater mussel Unio tumidus to titanium oxide nanoparticles, bisphenol A, and their combination. Ecotoxicology 28:923–937

    Article  CAS  Google Scholar 

  • Gondikas AP, von der Kammer F, Read RB et al (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the Old Danube recreational lake. Environ Sci Technol 48:5415–5422

    Article  CAS  Google Scholar 

  • Guo Y, Chen L, Wu J et al (2019) Parental co-exposure to bisphenol A and nano-TiO2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring. Sci Total Environ 650:557–565

    Article  CAS  Google Scholar 

  • Hartmann NB, Baun A (2010) The nano cocktail: ecotoxicological effects of engineered nanoparticles in chemical mixtures. Integr Environ Assess Manag 6:311–313

    Article  Google Scholar 

  • Heisterkamp I, Gandrass J, Ruck W (2004) Bioassay-directed chemical analysis utilizing LC-MS: a tool for identifying estrogenic compounds in water samples? Anal Bioanal Chem 378:709–715

    Article  CAS  Google Scholar 

  • Hu S, Han J, Yang L et al (2019) Impact of co-exposure to titanium dioxide nanoparticles and Pb on zebrafish embryos. Chemosphere 233:579–589

    Article  CAS  Google Scholar 

  • Hu CW, Zhang LJ, Wang WL et al (2014) Evaluation of the combined toxicity of multi-walled carbon nanotubes and sodium pentachlorophenate on the earthworm Eisenia fetida using avoidance bioassay and comet assay. Soil Biol Biochem 70:123–130

    Article  CAS  Google Scholar 

  • Huang YQ, Wong CK, Zheng JS et al (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99

    Article  CAS  Google Scholar 

  • Iswarya V, Sharma V, Chandrasekaran N et al (2017) Impact of tetracycline on the toxic effects of titanium dioxide (TiO2) nanoparticles towards the freshwater algal species, Scenedesmus obliquus. Aquat Toxicol 193:168–177

    Article  CAS  Google Scholar 

  • Ji Y, Zhou Y, Ma C et al (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Bioch 110:82–93

    Article  CAS  Google Scholar 

  • Jia J, Li F, Zhai S et al (2017) Susceptibility of overweight mice to liver injury as a result of the ZnO nanoparticle-enhanced liver deposition of Pb2+. Environ Sci Technol 51:1775–1784

    Article  CAS  Google Scholar 

  • Jr. Hochella M, Mogk D, Ranville JF et al (2019) Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363:eaau8299

    Google Scholar 

  • Josende ME, Nunes SM, Muller L et al (2019) Multigenerational effects of ecotoxicological interaction between arsenic and silver nanoparticles. Sci Total Environ 696:133947

    Google Scholar 

  • Kan H, Zhang H, Lu M et al (2021) Effects of carboxylated multi-walled carbon nanotubes on bioconcentration of pentachlorophenol and hepatic damages in goldfish. Ecotoxicology 30:1389–1398

    Article  CAS  Google Scholar 

  • Kora AJ, Rastogi L (2013) Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg Chem Appl 2013:871097

    Google Scholar 

  • Lammel T, Wassmur B, Mackevica A et al (2019) Mixture toxicity effects and uptake of titanium dioxide (TiO2) nanoparticles and 3,3′,4,4′-tetrachlorobiphenyl (PCB77) in juvenile brown trout following co-exposure via the diet. Aqua Toxicol 213:105195

    Google Scholar 

  • Lei L, Qiao K, Guo Y et al (2020) Titanium dioxide nanoparticles enhanced thyroid endocrine disruption of pentachlorophenol rather than neurobehavioral defects in zebrafish larvae. Chemosphere 249:126536

    Google Scholar 

  • Li Y, Men B, He Y et al (2017) Effect of single-wall carbon nanotubes on bioconcentration and toxicity of perfluorooctane sulfonate in zebrafish (Danio rerio). Sci Total Environ 607–608:509–518

    Article  Google Scholar 

  • Li L, Stoiber M, Wimmer A et al (2016) To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol 50:6327–6333

    Article  CAS  Google Scholar 

  • Li M, Wu Q, Wang Q et al (2018) Effect of titanium dioxide nanoparticles on the bioavailability and neurotoxicity of cypermethrin in zebrafish larvae. Aquat Toxicol 199:212–219

    Article  CAS  Google Scholar 

  • Lian J, Zhao L, Wu J et al (2020) Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 239:124794

    Google Scholar 

  • Ma T, Wang M, Gong S et al (2017) Impacts of sediment organic matter content and pH on ecotoxicity of coexposure of TiO2 nanoparticles and cadmium to freshwater snails Bellamya aeruginosa. Arch Environ Contam Toxicol 72:153–165

    Article  CAS  Google Scholar 

  • Manesh RR, Grassi G, Bergami E et al (2018) Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol Environ Saf 148:359–366

    Article  CAS  Google Scholar 

  • Matouke MM, Elewa DT, Abdullahi K (2018) Binary effect of titanium dioxide nanoparticles (nTiO2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907). Aquat Toxicol 198:40–48

    Article  CAS  Google Scholar 

  • Matouke MM, Mustapha M (2018) Bioaccumulation and physiological effects of copepods sp. (Eucyclop sp.) fed Chlorella ellipsoids exposed to titanium dioxide (TiO2) nanoparticles and lead (Pb2+). Aquat Toxicol 198:30–39

    Article  CAS  Google Scholar 

  • Meng J, Hong S, Wang T et al (2017) Traditional and new POPs in environments along the Bohai and Yellow Seas: an overview of China and South Korea. Chemosphere 169:503–515

    Article  CAS  Google Scholar 

  • Meng X, Li F, Wang X et al (2020) Toxicological effects of graphene on mussel Mytilus galloprovincialis hemocytes after individual and combined exposure with triphenyl phosphate. Mar Pollut Bull 151:110838

    Google Scholar 

  • Morozesk M, Franqui LS, Mansano AS et al (2018) Interactions of oxidized multiwalled carbon nanotube with cadmium on zebrafish cell line: the influence of two co-exposure protocols on in vitro toxicity tests. Aquat Toxicol 200:136–147

    Article  CAS  Google Scholar 

  • Morozesk M, Franqui LS, Pinheiro FC et al (2020) Effects of multiwalled carbon nanotubes co-exposure with cadmium on zebrafish cell line: metal uptake and accumulation, oxidative stress, genotoxicity and cell cycle. Ecotoxicol Environ Saf 202:110892

    Google Scholar 

  • Mortimer M, Devarajan N, Li D et al (2018) Multiwall carbon nanotubes induce more pronounced transcriptomic responses in Pseudomonas aeruginosa PG201 than graphene, exfoliated boron nitride, or carbon black. ACS Nano 12:2728–2740

    Article  CAS  Google Scholar 

  • Mottola F, Santonastaso M, Iovine C et al (2021) Adsorption of Cd to TiO2-NPs forms low genotoxic aggregates in zebrafish cells. Cells 10:310

    Article  CAS  Google Scholar 

  • Naasz S, Altenburger R, Kuhnel D (2018) Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. Sci Total Environ 635:1170–1181

    Article  CAS  Google Scholar 

  • Nunes SM, Josende ME, Ruas CP et al (2017) Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta. Toxicology 376:51–58

    Article  CAS  Google Scholar 

  • Nunes SM, Muller L, Simioni C et al (2020). Impact of different crystalline forms of nTiO2 on metabolism and arsenic toxicity in Limnoperna fortunei. Sci Total Environ 728:138318

    Google Scholar 

  • Oyelami AO, Semple KT (2015) Impact of carbon nanomaterials on microbial activity in soil. Soil Biol Biochem 86:172–180

    Article  CAS  Google Scholar 

  • Qian W, Chen CC, Zhou S et al (2020) TiO2 nanoparticles in the marine environment: enhancing bioconcentration, while limiting biotransformation of arsenic in the mussel Perna viridis. Environ Sci Technol 54:12254–12261

    Article  CAS  Google Scholar 

  • Qiang L, Shi X, Pan X et al (2015) Facilitated bioaccumulation of perfluorooctanesulfonate in zebrafish by nano-TiO2 in two crystalline phases. Environ Pollut 206:644–651

    Article  CAS  Google Scholar 

  • Ren X, Zhao X, Duan X et al (2018) Enhanced bio-concentration of tri(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Pollut 233:612–622

    Article  CAS  Google Scholar 

  • Rodd AL, Castilho CJ, Chaparro CEF et al (2018) Impact of emerging, high-production-volume graphene-based materials on the bioavailability of benzo(α)pyrene to brine shrimp and fish liver cells. Environ Sci: Nano 5:2144–2161

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2004) Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicol Environ Saf 59:64–69

    Article  CAS  Google Scholar 

  • Santos LHMLM, Freixa A, Insa S et al (2019) Impact of fullerenes in the bioaccumulation and biotransformation of venlafaxine, diuron and triclosan in river biofilms. Environ Res 169:377–386

    Article  CAS  Google Scholar 

  • Shi X, Li Z, Chen W et al (2016) Fate of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in the receiving streams. NanoImpact 3–4:96–103

    Article  Google Scholar 

  • Song M, Wang F, Zeng L et al (2014) Co-exposure of carboxyl-functionalized single-walled carbon nanotubes and 17α-ethinylestradiol in cultured cells: effects on bioactivity and cytotoxicity. Environ Sci Technol 48:13978–13984

    Article  CAS  Google Scholar 

  • Su Y, Yan X, Pu Y et al (2013) Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese medaka (Oryzias latipes). Environ Sci Technol 47:4704–4710

    Article  CAS  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbuhler K et al (2014b) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Google Scholar 

  • Sun H, Ruan Y, Zhu H et al (2014a) Enhanced bioaccumulation of pentachlorophenol in carp in the presence of multi-walled carbon nanotubes. Environ Sci Pollut Res 21:2865–2875

    Google Scholar 

  • Teng C, Jia J, Wang Z et al (2020) Oral co-exposures to zinc oxide nanoparticles and CdCl2 induced maternal-fetal pollutant transfer and embryotoxicity by damaging placental barriers. Ecotoxicol Environ Saf 189:109956

    Google Scholar 

  • Tian S, Zhang Y, Song C et al (2014) Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environ Pollut 192:59–64

    Article  CAS  Google Scholar 

  • Tian S, Zhang Y, Song C et al (2015) Bioaccumulation and biotransformation of polybrominated diphenyl ethers in the marine bivalve (Scapharca subcrenata): influence of titanium dioxide nanoparticles. Mar Pollut Bull 90:48–53

    Article  CAS  Google Scholar 

  • Torre CD, Buonocore F, Frenzilli G et al (2015) Influence of titanium dioxide nanoparticles on 2,2,7,8-tetrachlorodibenzo-p-dioxin bioconcentration and toxicity in the marine fish European sea bass (Dicentrarchus labrax). Environ Pollut 196:185–193

    Article  Google Scholar 

  • Torre CD, Parolini M, Giacco LD et al (2017) Adsorption of B(α)P on carbon nanopowder affects accumulation and toxicity in zebrafish (Danio rerio) embryos. Environ Sci Nano 4:1132–1146

    Article  Google Scholar 

  • Torre-Roche RDL, Hawthorne J, Musante C et al (2013) Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ Sci Technol 47:718–725

    Article  Google Scholar 

  • Torre-Roche RDL, Pagano L, Majumdar S et al (2018) Co-exposure of imidacloprid and nanoparticle Ag or CeO2 to Cucurbita pepo (zucchini): contaminant bioaccumulation and translocation. NanoImpact 11:136–145

    Article  Google Scholar 

  • Trigueiro NSS, Goncalves BB, Dias FC et al (2021) Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). Environ Toxicol Pharmacol 81:103521

    Google Scholar 

  • Vannuccini ML, Grassi G, Leaver MJ et al (2015) Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. Comp Biochem Physiol C 176–177:71–78

    Google Scholar 

  • Wang Z, Wang S, Peijnenburg WJGM (2016) Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol: independent action surpasses concentration addition. Chemosphere 156:8–13

    Article  CAS  Google Scholar 

  • Wang F, Yao J, Liu H et al (2015) Cu and Cr enhanced the effects of various carbon nanotubes on microbial communities in an aquatic environment. J Hazard Mater 292:137–145

    Article  CAS  Google Scholar 

  • Wang W, Zhao X, Ren X et al (2020) Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): oxidative stress, apoptosis and DNA damage. Aquat Toxicol 225:105546

    Google Scholar 

  • Wen Y, Zhang L, Chen Z et al (2016) Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana: enantioselective effects. Chemosphere 145:207–214

    Article  CAS  Google Scholar 

  • Wu J, Shi Y, Asweto CO et al (2016) Co-exposure to amorphous silica nanoparticles and benzo[α]pyrene at low level in human bronchial epithelial BEAS-2B cells. Environ Sci Pollut Res 23:23134–23144

    Article  CAS  Google Scholar 

  • Wu Q, Yan W, Liu C et al (2019b) Co-exposure with titanium dioxide nanoparticles exacerbates MCLR-induced brain injury in zebrafish. Sci Total Environ 693:133540

    Google Scholar 

  • Wu J, Zhang J, Nie J et al (2019a) The chronic effect of amorphous silica nanoparticles and benzo[α]pyrene co-exposure at low dose in human bronchial epithelial BEAS-2B cells. Toxicol Res 8:731

    Google Scholar 

  • Xu Z, Tang T, Cheng H et al (2019) Negligible effects of TiO2 nanoparticles at environmentally relevant concentrations on the translocation and accumulation of perfluorooctanoic acid and perfluorooctanesulfonate in hydroponically grown pumpkin seedlings (Cucurbita maxima × C. moschata). Sci Total Environ 686:171–178

    Article  CAS  Google Scholar 

  • Yan Z, Lu G, Sun H et al (2017) Influence of multi-walled carbon nanotubes on the effects of roxithromycin in crucian carp (Carassius auratus) in the presence of natural organic matter. Chemosphere 178:165–172

    Article  CAS  Google Scholar 

  • Yan Z, Lu G, Sun H et al (2019) Comparison of the accumulation and metabolite of fluoxetine in zebrafish larva under different environmental conditions with or without carbon nanotubes. Ecotoxicol Environ Saf 172:240–245

    Article  CAS  Google Scholar 

  • Zareitalabad P, Siemens J, Hamer M et al (2013) Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—a review on concentrations and distribution coefficients. Chemosphere 91:725–732

    Article  CAS  Google Scholar 

  • Zhang S, Deng R, Lin D et al (2017) Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae. Nanotoxicology 11:1115–1126

    Article  CAS  Google Scholar 

  • Zhang Y, Xu X, Zhu S et al (2016) Combined toxicity of Fe3O4 nanoparticles and cadmium chloride in mice. Toxicol Res 5:1309–1317

    Article  CAS  Google Scholar 

  • Zhu B, Han J, Lei L et al (2021a) Effects of SiO2 nanoparticles on the uptake of tetrabromobisphenol A and its impact on the thyroid endocrine system in zebrafish larvae. Ecotoxicol Environ Saf 209:111845

    Google Scholar 

  • Zhu Y, Wu X, Liu Y et al (2021b) Synergistic growth inhibition effect of TiO2 nanoparticles and tris(1,3-dichloro-2-propyl) phosphate on earthworm in soil. Ecotoxicol Environ Saf 208:111462

    Google Scholar 

  • Zou X, Xu B, Yu C et al (2013) Combined toxicity of ferroferric oxide nanoparticles and arsenic to the ciliated protozoa Tetrahymena pyriformis. Aquat Toxicol 134–135:66–73

    Article  Google Scholar 

  • Zhu J, Zou Z, Shen Y et al (2019) Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene. Environ Pollut 247:108–117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxiangyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Xu, Z. (2022). Knowledge Gained from Co-exposure Studies of Nanomaterials and Chemicals. In: Guo, LH., Mortimer, M. (eds) Advances in Toxicology and Risk Assessment of Nanomaterials and Emerging Contaminants. Springer, Singapore. https://doi.org/10.1007/978-981-16-9116-4_8

Download citation

Publish with us

Policies and ethics