Skip to main content

Electrochemistry and Organic Electrochemistry of Fullerenes

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 421 Accesses

Abstract

This chapter is divided into two parts, the electrochemistry of fullerenes and their derivatives and electrosynthesis of fullerene derivatives. For the electrochemistry of fullerenes, attention is paid to the application of cyclic voltammetry in revealing the redox processes of fullerenes. The electrochemistry of different fullerenes is also discussed. As for the fullerene derivatives, the effects of the nature of addends, the number of addends, and the addition pattern are discussed. In addition, the stability difference between different isomers is discussed, and the electrochemistry of the singly bonded C60 anionic species is shown. For the electrosynthesis of fullerene derivatives, the review starts from the typical reactions of fullerene dianions with alkyl bromides or iodides. Then it is extended to the dianions of fullerene derivatives, where a unique regioselectivity is shown. The reactions of fullerene dianions with O2 and PhCN is also discussed, which afford a new type of fullerene oxazoline compounds. In addition, the application of electrochemistry for reaction mechanism study and heterocyclic rearrangement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  3. Haufler RE, Conceicao J, Chibante LPF, Chai Y, Byrne NE, Flanagan S, Haley MM, O'Brien SC, Pan C, Xiao Z, Billups WE, Ciufolini MA, Hauge RH, Margrave JL, Wilson LJ, Curl RF, Smalley RE (1990) Efficient production of C60 (buckminsterfullerene), C60H38, and the solvated buckide ion. J Phys Chem 94:8634–8636

    Article  CAS  Google Scholar 

  4. Li Y (2013) Fullerene-bisadduct acceptors for polymer solar cells. Chem Asian J 8:2316–2328

    Article  CAS  PubMed  Google Scholar 

  5. Caron C, Subramanian R, D'Souza F, Kim J, Kutner W, Jones MT, Kadish KM (1993) Selective electrosynthesis of (CH3)2C60: a novel method for the controlled functionalization of fullerenes. J Am Chem Soc 115:8505–8506

    Article  CAS  Google Scholar 

  6. Yang W-W, Li Z-J, Li F-F, Gao X (2011) Electrochemical and H/D-labeling study of oxazolino[60]fullerene rearrangement. J Org Chem 76:1384–1389

    Article  CAS  PubMed  Google Scholar 

  7. Haddon RC, Brus LE, Raghavachari K (1986) Electronic structure and bonding in icosahedral C60. Chem Phys Lett 125:459–464

    Article  CAS  Google Scholar 

  8. Allemand P-M, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, Anz SJ, Whetten RL (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113:1050–1051

    Article  CAS  Google Scholar 

  9. Dubois D, Kadish KM, Flanagan S, Haufler RE, Chibante LPF, Wilson LJ (1991) Spectroelectrochemical study of the C60 and C70 fullerenes and their mono-, di-, tri-, and tetraanions. J Am Chem Soc 113:4364–4366

    Article  CAS  Google Scholar 

  10. Dubois D, Kadish KM, Flanagan S, Wilson LJ (1991) Electrochemical detection of fulleronium and highly reduced fulleride (C605–) ions in solution. J Am Chem Soc 113:7773–7774

    Article  CAS  Google Scholar 

  11. Xie Q, Pérez-Cordero E, Echegoyen L (1992) Electrochemical detection of C606− and C706−: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980

    Article  CAS  Google Scholar 

  12. Ohsawa Y, Saji T (1992) Electrochemical detection of C606− at low temperature. J Chem Soc Chem Commun:781–782

    Google Scholar 

  13. Gao X, Van Caemelbecke E, Kadish KM (1998) Visible and near-infrared absorption spectra of singly and doubly reduced C76 fullerene anions. Electrochem Solid-State Lett 1:222–223

    Article  CAS  Google Scholar 

  14. Azamar-Barrios JA, Dennis TJS, Sadhukan S, Shinohara H, Scuseria GE, Pénicaud A (2001) Characterization of six isomers of [84]fullerene C84 by electrochemistry, electron spin resonance spectroscopy, and molecular energy levels calculations. J Phys Chem A 105:4627–4632

    Article  CAS  Google Scholar 

  15. Xie Q, Arias F, Echegoyen L (1993) Electrochemically-reversible, single-electron oxidation of C60 and C70. J Am Chem Soc 115:9818–9819

    Article  CAS  Google Scholar 

  16. Yang X-Y, Lin H-S, Jeon I, Matsuo Y (2018) Fullerene-cation-mediated noble-metal-free direct introduction of functionalized aryl groups onto [60]fullerene. Org Lett 20:3372–3376

    Article  CAS  PubMed  Google Scholar 

  17. Yang X-Y, Lin H-S, Matsuo Y (2019) Highly selective synthesis of tetrahydronaphthaleno[60]fullerenes via fullerene-cation-mediated intramolecular cyclization. J Org Chem 84:16314–16322

    Article  CAS  PubMed  Google Scholar 

  18. Echegoyen L, Echegoyen LE (1998) Electrochemistry of fullerenes and their derivatives. Acc Chem Res 31:593–601

    Article  CAS  Google Scholar 

  19. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538

    Article  CAS  Google Scholar 

  20. Deng L-L, Xie S-Y, Gao F (2018) Fullerene-based materials for photovoltaic applications: toward efficient, hysteresis-free, and stable perovskite solar cells. Adv Electron Mater 4:1700435

    Article  Google Scholar 

  21. Chen Z, Mou K, Yao S, Liu L (2018) Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM. J Mater Chem A 6:11236–11243

    Article  CAS  Google Scholar 

  22. Keshavarz-K M, Knight B, Srdanov G, Wudl F (1995) Cyanodihydrofullerenes and dicyanodihydrofullerene: the first polar solid based on C60. J Am Chem Soc 117:11371–11372

    Article  CAS  Google Scholar 

  23. Powell WH, Cozzi F, Moss GP, Thilgen C, Hwu RJ-R, Yerin A (2002) Nomenclature for the C60-Ih and C70-D5h(6) fullerenes. Pure Appl Chem 74:629–695

    Article  CAS  Google Scholar 

  24. Carano M, Da Ros T, Fanti M, Kordatos K, Marcaccio M, Paolucci F, Prato M, Roffia S, Zerbetto F (2003) Modulation of the reduction potentials of fullerene derivatives. J Am Chem Soc 125:7139–7144

    Article  CAS  PubMed  Google Scholar 

  25. Hirsch A, Lamparth I, Grösser T, Karfunkel HR (1994) Regiochemistry of multiple additions to the fullerene core: synthesis of a Th-symmetric hexakisadduct of C60 with bis(ethoxycarbony1)methylene. J Am Chem Soc 116:9385–9386

    Article  CAS  Google Scholar 

  26. Matsuzawa N, Dixon DA, Fukunaga T (1992) Semiempirical calculations of dihydrogenated buckminsterfullerenes, C60H2. J Phys Chem 96:7594–7604

    Article  CAS  Google Scholar 

  27. Zheng M, Li F-F, Shi Z, Gao X, Kadish KM (2007) Electrosynthesis and characterization of 1,2-dibenzyl C60: a revisit. J Org Chem 72:2538–2542

    Article  CAS  PubMed  Google Scholar 

  28. Kadish KM, Gao X, Van Caemelbecke E, Suenobu T, Fukuzumi S (2000) Electrosynthesis and structural characterization of two (C6H5CH2)4C60 isomers. J Am Chem Soc 122:563–570

    Article  CAS  Google Scholar 

  29. Ford WT, Nishioka T, Qiu F, D’Souza F, Choi J-p (2000) Dimethyl azo(bisisobutyrate) and C60 produce 1,4- and 1,16-di(2-carbomethoxy-2-propyl)-1,x-dihydro[60]fullerenes. J Org Chem 65:5780–5784

    Article  CAS  PubMed  Google Scholar 

  30. Popov AA, Kareev IE, Shustova NB, Stukalin EB, Lebedkin SF, Seppelt K, Strauss SH, Boltalina OV, Dunsch L (2007) Electrochemical, spectroscopic, and DFT study of C60(CF3)n frontier orbitals (n = 2−18): the link between double bonds in pentagons and reduction potentials. J Am Chem Soc 129:11551–11568

    Article  CAS  PubMed  Google Scholar 

  31. Yang W-W, Li Z-J, Li S-H, Wu S-L, Shi Z, Gao X (2017) Reductive activation of C70 equatorial carbons and structurally characterized C70 δ-adduct with closed [5,6]-ring fusion. J Org Chem 82:9253–9257

    Article  CAS  PubMed  Google Scholar 

  32. Chang W-W, Li Z-J, He F-G, Sun T, Gao X (2015) Electronic vs steric effects on the stability of anionic species: a case study on the ortho and para regioisomers of organofullerenes. J Org Chem 80:1557–1563

    Article  CAS  PubMed  Google Scholar 

  33. Ni L, Chang W-W, Hou H-L, Li Z-J, Gao X (2011) Preparation and characterisation of an equatorial para-adduct of (PhCH2)HC70 from the reaction of C702– with benzyl bromide and H2O: addition effects in the polar and equatorial regions of C70. Org Biomol Chem 9:6646–6653

    Article  CAS  PubMed  Google Scholar 

  34. Yang W-W, Li Z-J, Gao X (2011) Formation of singly bonded PhCH2C60−C60CH2Ph dimers from 1,2-(PhCH2)HC60 via electroreductive C60−H activation. J Org Chem 76:6067–6074

    Article  CAS  PubMed  Google Scholar 

  35. Hou H-L, Li Z-J, Gao X (2014) Reductive benzylation of C60 imidazoline with a bulky addend. Org Lett 16:712–715

    Article  CAS  PubMed  Google Scholar 

  36. Subramanian R, Kadish KM, Vijayashree MN, Gao X, Jones MT, Miller MD, Krause KL, Suenobu T, Fukuzumi S (1996) Chemical generation of C602− and electron transfer mechanism for the reactions with alkyl bromides. J Phys Chem 100:16327–16335

    Article  CAS  Google Scholar 

  37. Yang W-W, Li Z-J, Gao X (2010) Reaction of C602− with organic halides revisited in DMF: proton transfer from water to RC60 and unexpected formation of 1,2-dihydro[60]fullerenes. J Org Chem 75:4086–4094

    Article  CAS  PubMed  Google Scholar 

  38. Liu K-Q, Wang G-W (2019) Reactions of the electrochemically generated dianion of [60]fullerene with bulky secondary alky bromides. Tetrahedron Lett 60:1049–1052

    Article  CAS  Google Scholar 

  39. Sawamura M, Toganoh M, Suzuki K, Hirai A, Iikura H, Nakamura E (2000) Stepwise synthesis of fullerene cyclopentadienide R5C60 and indenide R3C60. An approach to fully unsymmetrically substituted derivatives. Org Lett 2:1919–1921

    Article  CAS  PubMed  Google Scholar 

  40. Kitaura S, Kurotobi K, Sato M, Takano Y, Umeyama T, Imahori H (2012) Effects of dihydronaphthyl-based [60]fullerene bisadduct regioisomers on polymer solar cell performance. Chem Commun 48:8550–8552

    Article  CAS  Google Scholar 

  41. Li Z-J, Wang S, Li S-H, Sun T, Yang W-W, Shoyama K, Nakagawa T, Jeon I, Yang X, Matsuo Y, Gao X (2017) Regiocontrolled electrosynthesis of [60]fullerene bisadducts: photovoltaic performance and crystal structures of C60 o-quinodimethane bisadducts. J Org Chem 82:8676–8685

    Article  CAS  PubMed  Google Scholar 

  42. Maeda Y, Sanno M, Morishita T, Sakamoto K, Sugiyama E, Akita S, Yamada M, Suzuki M (2019) Reaction of the C60 radical anion with alkyl halides. New J Chem 43:6457–6460

    Article  CAS  Google Scholar 

  43. Khaled MM, Carlin RT, Trulove PC, Eaton CR, Eaton SS (1994) Electrochemical generation and electron paramagnetic resonance studies of C60, C602−, and C603−. J Am Chem Soc 116:3465–3474

    Article  CAS  Google Scholar 

  44. Zheng M, Li F-F, Ni L, Yang W-W, Gao X (2008) Synthesis and identification of heterocyclic derivatives of fullerene C60: unexpected reaction of anionic C60 with benzonitrile. J Org Chem 73:3159–3168

    Article  CAS  PubMed  Google Scholar 

  45. Rapta P, Bartl A, Gromov A, Staško A, Dunsch L (2002) In situ ESR/Vis/NIR spectroelectrochemistry of [60]fullerene: the origin of ESR “Spikes” and the reactivity of pristine fullerene anions. Chem Phys Chem 3:351–356

    Article  CAS  PubMed  Google Scholar 

  46. Hou H-L, Gao X (2012) Aerobic oxidations of C602− in the presence of PhCN and PhCH2CN: oxygenation versus dehydrogenation reactions. J Org Chem 77:2553–2558

    Article  CAS  PubMed  Google Scholar 

  47. Kadish KM, Gao X, Gorelik O, Van Caemelbecke E, Suenobu T, Fukuzumi S (2000) Electrogeneration and characterization of (C6H5CH2)2C70. J Phys Chem A 104:2902–2907

    Article  CAS  Google Scholar 

  48. Li S-H, Li Z-J, Yang W-W, Gao X (2013) Reactions of C702− with organic halides revisited: unusual magnetic equivalence for the diastereotopic methylene protons in 2,5-(PhCH2)2C70. J Org Chem 78:7208–7215

    Article  CAS  PubMed  Google Scholar 

  49. Meng X, Zhang W, Tan Z, Du C, Li C, Bo Z, Li Y, Yang X, Zhen M, Jiang F, Zheng J, Wang T, Jiang L, Shu C, Wang C (2012) Dihydronaphthyl-based [60]fullerene bisadducts for efficient and stable polymer solar cells. Chem Commun 48:425–427

    Article  CAS  Google Scholar 

  50. Thilgen C, Diederich F (1999) The higher fullerenes: covalent chemistry and chirality. Top Curr Chem 199:135–171

    Article  CAS  Google Scholar 

  51. Ni L, Yang W-W, Li Z-J, Wu D, Gao X (2012) Regioselective oxazolination of C702− and formation of cis-1 C70 adduct with respect to the apical pentagon. J Org Chem 77:7299–7306

    Article  CAS  PubMed  Google Scholar 

  52. Xiao Y, Zhu S-E, Liu D-J, Suzuki M, Lu X, Wang G-W (2014) Regioselective electrosynthesis of rare 1,2,3,16-functionalized [60]fullerene derivatives. Angew Chem Int Ed 53:3006–3010

    Article  CAS  Google Scholar 

  53. Li Z-J, Li S-H, Sun T, Hou H-L, Gao X (2015) Reductive benzylation of singly bonded 1,2,4,15-C60 dimers with an oxazoline or imidazoline heterocycle: unexpected formation of 1,2,3,16-C60 adducts and insights into the reactivity of singly bonded C60 dimers. J Org Chem 80:3566–3571

    Article  CAS  PubMed  Google Scholar 

  54. Chen S, Li Z-J, Li S-H, Gao X (2015) Base-promoted consecutive enolate addition reaction of [60]fullerene with ketones. Org Lett 17:5192–5195

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gao, X. (2022). Electrochemistry and Organic Electrochemistry of Fullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_34

Download citation

Publish with us

Policies and ethics