Skip to main content

Theoretical Predictions of Fullerene Stabilities

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

This chapter deals with computational and theoretical support to fullerene/nanocarbon research needed for interpretations, rationalizations, and generalizations of experimental results. In particular, predictions of various nanocarbon stabilities, or even populations, based on quantum-chemical and statistical-mechanical methods, are surveyed. The calculations are, with respect to high temperatures in fullerene electric-arc syntheses, frequently based on the Gibbs energy. Considerable thermal effects on the relative isomeric and nonisomeric populations thus revealed in the theoretical treatments originate, on molecular level, in a complex interplay between rotational, vibrational, electronic, relative potential-energy, symmetry, and chirality factors. The considered treatments are built upon a presumption of the (inter-isomeric) thermodynamic equilibrium; however, some kinetic and catalytic aspects are also included. The survey is focused on empty fullerenes, metallofullerenes, clusterfullerenes, and nonmetal endohedrals. The covered quantum-chemical treatments are the semiempirical, ab initio Hartree-Fock, density-functional theory, and perturbation approaches. The calculations have already yielded a reasonable computation-observation agreement for the isomeric systems with empty C76 till C96 cages, and mostly also when applied to metallofullerenes. This relatively large tested set supports the belief in still wider applicability of the Gibbs-energy calculations to basically all classes of nanocarbons. This chapter is complementary to this volume chapter Theoretical Prediction of Fullerene Reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81:3322–3330

    Article  CAS  Google Scholar 

  3. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  4. Slanina Z (2001) ISSPIC-5 in Konstanz in 1990: announcements of the C60 preparation and its structure confirmation. Int J Hist Eth Natur Sci Technol Med NTM 9:41–46

    Google Scholar 

  5. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107:7779–7780

    Article  CAS  Google Scholar 

  6. Kroto HW, Allaf AW, Balm SP (1991) C60: buckminsterfullerene. Chem Rev 91:1213–1235

    Article  CAS  Google Scholar 

  7. Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563

    Article  PubMed  Google Scholar 

  8. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Article  CAS  PubMed  Google Scholar 

  9. Slanina Z, Uhlík F, Lee S-L, Akasaka T, Nagase S (2012) Stability computations for fullerenes and metallofullerenes. In: D’Souza F, Kadish KM (eds) Handbook of carbon Nano materials, Vol. 4. Materials and fundamental applications. World Scientific, Singapore, pp 381–429

    Chapter  Google Scholar 

  10. Cioslowski J (1993) Ab initio calculations on large molecules: methodology and applications. Rev Comput Chem 4:1–33

    CAS  Google Scholar 

  11. Slanina Z, Lee S-L, Yu C-H (1996) Computations in treating fullerenes and carbon aggregates. Rev Comput Chem 8:1–62

    CAS  Google Scholar 

  12. Slanina Z (1975) Remark on the present applicability of quantum chemistry to the calculations of equilibrium and rate constants of chemical reactions. Radiochem Radioanal Lett 22:291–298

    CAS  Google Scholar 

  13. Slanina Z, Zahradnik R (1977) MINDO/2 study of equilibrium carbon vapor. J Phys Chem 81:2252–2257

    Article  CAS  Google Scholar 

  14. Schultz HP (1965) Topological organic chemistry. Polyhedranes and prismanes. J Org Chem 30:1361–1364

    Article  CAS  Google Scholar 

  15. Ōsawa E (1970) Superaromaticity. Kagaku 25:854–863; Chem. Abstr. 74, 75698v (1971)

    Google Scholar 

  16. Slanina Z, Zhao X, Uhlík F, Lee S-L, Adamowicz L (2004) Computing enthalpy-entropy interplay for isomeric fullerenes. Int J Quantum Chem 99:640–653

    Article  CAS  Google Scholar 

  17. Slanina Z, Rudziński JM, Togasi M, Ōsawa E (1989) Quantum-chemically supported vibrational analysis of giant molecules: the C60 and C70 clusters. J Mol Struct (THEOCHEM) 202:169–176

    Article  Google Scholar 

  18. Slanina Z, Lee S-L, Uhlik F, Adamowicz L, Nagase S (2007) Computing relative stabilities of metallofullerenes by Gibbs energy treatments. Theor Chem Accounts 117:315–322

    Article  CAS  Google Scholar 

  19. Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Akasaka T, Nagase S (2011) Calculations of metallofullerene yields. J Comput Theor Nanosci 8:2233–2239

    Article  CAS  Google Scholar 

  20. Slanina Z (1986) Contemporary theory of chemical isomerism. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  21. Akasaka T, Nagase S, Kobayashi K, Wälchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem Intl Ed Engl 36:1643–1645

    Article  CAS  Google Scholar 

  22. Slanina Z (1974) Ph.D. thesis. Czech Academy of Science, Prague

    Google Scholar 

  23. Sun M-L, Slanina Z, Lee S-L (1995) Square/hexagon route towards the boron-nitrogen clusters. Chem Phys Lett 233:279–283

    Article  CAS  Google Scholar 

  24. Zhao X, Slanina Z, Ozawa M, Osawa E, Deota P, Tanabe K (2000) C32: computations of low-energy cages with four-membered rings. Fuller Sci Technol 8:595–613

    Article  CAS  Google Scholar 

  25. Slanina Z, Zhao X, Kurita N, Gotoh H, Uhlik F, Rudziński JM, Lee KH, Adamowicz L (2001) Computing the relative gas-phase populations of C60 and C70: beyond the traditional \( \Delta {H}_{f,298}^o \) scale. J Mol Graphics Mod 19:216–221

    Google Scholar 

  26. Slanina Z (2003) Clusters in a saturated vapor: pressure-based temperature enhancement of the cluster fraction. Z Phys Chem 217:1119–1125

    Article  CAS  Google Scholar 

  27. Manolopoulos DE, Fowler PW (1992) Molecular graphs, point groups, and fullerenes. J Chem Phys 96:7603–7614

    Article  CAS  Google Scholar 

  28. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon Press, Oxford

    Google Scholar 

  29. Schwerdtfeger P, Wirz LN, Avery J (2015) The topology of fullerenes. WIREs Comput Mol Sci 5:96–145

    Article  CAS  Google Scholar 

  30. Manolopoulos DE, Fowler PW (1993) A fullerene without a spiral. Chem Phys Lett 204:1–7

    Article  CAS  Google Scholar 

  31. Stone AJ, Wales DJ (1986) Topological theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Article  CAS  Google Scholar 

  32. Manolopoulos DE, May JC, Down SE (1991) Theoretical studies of the fullerenes – C34 to C70. Chem Phys Lett 181:105–111

    Article  CAS  Google Scholar 

  33. Liu X, Klein DJ, Seitz WA, Schmalz TG (1991) Sixty-atom carbon cages. J Comput Chem 12:1265–1269

    Article  CAS  Google Scholar 

  34. Slanina Z, Uhlík F, Sheu J-H, Lee S-L, Adamowicz L, Nagase S (2008) Stabilities of fullerenes: illustration on C80. MATCH Commun Math Comput Chem 59:225–238

    CAS  Google Scholar 

  35. Sun M-L, Slanina Z, Lee S-L (1995) AM1 computations on C59: significant eight- and nine-membered rings. Fuller Sci Technol 3:627–639

    Article  CAS  Google Scholar 

  36. Fowler PW, Quinn CM, Redmond DB (1991) Decorated fullerenes and model structures for water clusters. J Chem Phys 95:7678–7681

    Article  CAS  Google Scholar 

  37. Balasubramanian K (1991) Enumeration of isomers of polysubstituted C60 and application to NMR. Chem Phys Lett 182:257–262

    Article  CAS  Google Scholar 

  38. Brendsdal E, Cyvin SJ, Cyvin BN, Brunvoll J, Klein DJ, Seitz WA (1990) Buckminster-fullerene, Part C: Hückel energy levels. In: Hargittai I (ed) Quasicrystals, networks, and molecules of fivefold symmetry. VCH Pub, New York, pp 265–276

    Google Scholar 

  39. Bochvar DA, Gal’pern EG (1973) Hypothetical systems: carbododecahedron, s-icosahedron, and carbo-s-icosahedron. Dokl Akad Nauk SSSR 209:610–612

    CAS  Google Scholar 

  40. Slanina Z, Adamowicz L (1993) One-, two- and three-dimensional structures of C20. Fuller Sci Technol 1:1–9

    Article  CAS  Google Scholar 

  41. van Orden A, Saykally RJ (1998) Small carbon clusters: spectroscopy, structure, and energetics. Chem Rev 98:2313–2357

    Article  PubMed  Google Scholar 

  42. von Helden G, Kemper PR, Gotts NG, Bowers MT (1993) Isomers of small carbon cluster anions – linear chains with up to 20 atoms. Science 259:1300–1302

    Article  Google Scholar 

  43. Slanina Z, Adamowicz L, François J-P, Ōsawa E (1998) Fullerenes & other carbon aggregates and the diffuse interstellar bands. In: Vigasin AA, Slanina Z (eds) Molecular complexes in Earth’s, planetary, cometary, and interstellar atmospheres. World Scientific, Singapore, pp 133–176

    Chapter  Google Scholar 

  44. Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Nagase S (2006) Computations of endohedral fullerenes: the Gibbs energy treatment. J Comput Meth Sci Eng 6:243–250

    CAS  Google Scholar 

  45. Slanina Z (1989) A program for determination of composition and thermodynamics of the ideal gas-phase equilibrium isomeric mixtures. Comput Chem 13:305–311

    Article  CAS  Google Scholar 

  46. Kato H, Taninaka A, Sugai T, Shinohara H (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125:7782–7783

    Article  CAS  PubMed  Google Scholar 

  47. Slanina Z, Ishimura K, Kobayashi K, Nagase S (2004) C72 isomers: the IPR-satisfying cage is disfavored by both energy and entropy. Chem Phys Lett 384:114–118

    Article  CAS  Google Scholar 

  48. Wan TSM, Zhang HW, Nakane T, Xu ZD, Inakuma M, Shinohara H, Kobayashi K, Nagase S (1998) Production, isolation, and electronic properties of missing fullerenes: Ca@C72 and Ca@C74. J Am Chem Soc 120:6806–6807

    Article  CAS  Google Scholar 

  49. Slanina Z, Uhlík F, Zhao X, Adamowicz L, Nagase S (2007) Relative stabilities of C74 isomers. Fulleren Nanotub Carb Nanostruct 15:195–205

    Article  CAS  Google Scholar 

  50. Sun M-L, Slanina Z, Lee S-L, Uhlík F, Adamowicz L (1995) AM1 computations on seven isolated-pentagon-rule isomers of C80. Chem Phys Lett 246:66–72

    Article  CAS  Google Scholar 

  51. Slanina Z, Lee S-L, Uhlík F, Adamowicz L, Nagase S (2006) Excited electronic states and relative stabilities of C80 isomers. Int J Quantum Chem 106:2222–2228

    Article  CAS  Google Scholar 

  52. Furche F, Ahlrichs R (2001) Fullerene C80: are there still more isomers? J Chem Phys 114:10362–10367

    Article  CAS  Google Scholar 

  53. Slanina Z, Lee S-L, Yoshida M, Ōsawa E (1996) Computations on nineteen isolated-pentagon-rule isomers of C86. Chem Phys 209:13–18

    Article  CAS  Google Scholar 

  54. Slanina Z, Lee S-L, Adamowicz L (1997) C80, C86, C88, Semiempirical and ab initio SCF calculations. Int J Quantum Chem 63:529–535

    Article  CAS  Google Scholar 

  55. Cross RJ, Saunders M (2005) Transmutation of fullerenes. J Am Chem Soc 127:3044–3047

    Article  CAS  PubMed  Google Scholar 

  56. Wang Z, Yang H, Jiang A, Liu Z, Olmstead MM, Balch AL (2010) Structural similarities in Cs(16)-C86 and C2(17)-C86. Chem Commun 46:5262–5264

    Article  CAS  Google Scholar 

  57. Chen C-H, Lin D-Y, Yeh W-Y (2014) Regiospecific coordination of Re3 clusters with the sumanene type hexagons on endohedral metallofullerenes and higher fullerenes that provides an efficient separation method. Chem Eur J 20:5768–5775

    Article  CAS  PubMed  Google Scholar 

  58. Kobayashi K, Nagase S (2002) Structures and electronic properties of endohedral metallofullerenes; theory and experiment. In: Akasaka T, Nagase S (eds) Endofullerenes – a new family of carbon clusters. Kluwer Academic Publishers, Dordrecht, pp 99–119

    Chapter  Google Scholar 

  59. Ichikawa T, Kodama T, Suzuki S, Fujii R, Nishikawa H, Ikemoto I, Kikuchi K, Achiba Y (2004) Isolation characterization of a new isomer of Ca@C72. Chem Lett 33:1008–1009

    Article  CAS  Google Scholar 

  60. Slanina Z, Kobayashi K, Nagase S (2003) Ca@C72 IPR and non-IPR structures: computed temperature development of their relative concentrations. Chem Phys Lett 372:810–814

    Article  CAS  Google Scholar 

  61. Kodama T, Fujii R, Miyake Y, Suzuki S, Nishikawa H, Ikemoto I, Kikuchi K, Achiba Y (2003) 13C NMR study of Ca@C74: cage structure and dynamics of a Ca atom inside the cage. In: Guldi DM, Kamat PV, D’Souza F (eds) Fullerenes, Vol. 13: fullerenes and nanotubes: the building blocks of next generation Nanodevices. The Electrochemical Society, Pennington, pp 548–551

    Google Scholar 

  62. Slanina Z, Kobayashi K, Nagase S (2004) Ca@C74 isomers: relative concentrations at higher temperatures. Chem Phys 301:153–157

    Article  CAS  Google Scholar 

  63. Uhlík F, Slanina Z, Lee S-L, Adamowicz L, Nagase S (2013) Stability calculations for Eu@C74 isomers. Int J Quantum Chem 113:729–733

    Article  Google Scholar 

  64. Xu ZD, Nakane T, Shinohara H (1996) Production and isolation of Ca@C82 (I-IV) and Ca@C84 (I,II) metallofullerenes. J Am Chem Soc 118:11309–11310

    Article  CAS  Google Scholar 

  65. Kodama T, Fujii R, Miyake Y, Sakaguchi K, Nishikawa H, Ikemoto I, Kikuchi K, Achiba Y (2003) Structural study of four Ca@C82 isomers by 13C NMR spectroscopy Chem. Phys Lett 377:197–200

    CAS  Google Scholar 

  66. Slanina Z, Kobayashi K, Nagase S (2004) Ca@C82 isomers: computed temperature dependency of relative concentrations. J Chem Phys 120:3397–3400

    Article  CAS  PubMed  Google Scholar 

  67. Akasaka T, Wakahara T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Kondo M, Shirakura S, Maeda Y, Kato T, Kako M, Nakadaira Y, Gao X, van Caemelbecke E, Kadish KM (2001) Structural determination of the La@C82 isomer. J Phys Chem B 105:2971–2974

    Article  CAS  Google Scholar 

  68. Slanina Z, Kobayashi K, Nagase S (2004) Computed temperature development of the relative stabilities of La@C82 isomers. Chem Phys Lett 388:74–78

    Article  CAS  Google Scholar 

  69. Lian YF, Yang SF, Yang SH (2002) Revisiting the preparation of La@C82 (I and II) and La2 @C80: efficient production of the “minor” isomer La@C82 (II). J Phys Chem B 106:3112–3117

    Article  CAS  Google Scholar 

  70. Slanina Z, Uhlík F, Akasaka T, Lu X, Adamowicz L (2019) Computational modeling of the Ce@C82 metallofullerene isomeric composition. ECS J Solid State Sci Technol 8:M118–M121

    Article  CAS  Google Scholar 

  71. Shibata K, Rikiishi Y, Hosokawa T, Haruyama Y, Kubozono Y, Kashino S, Uruga T, Fujiwara A, Kitagawa H, Takano T, Iwasa Y (2003) Structural and electronic properties of Ce@C82. Phys Rev B 68:094104-1–094104-7

    Article  Google Scholar 

  72. Yang H, Yu M, Jin H, Liu Z, Yao M, Liu B, Olmstead MM, Balch AL (2012) Isolation of three isomers of Sm@C84 and X-ray crystallographic characterization of Sm@D3d(19)-C84 and Sm@C2(13)-C84. J Am Chem Soc 134:5331–5338

    Article  CAS  PubMed  Google Scholar 

  73. Slanina Z, Uhlík F, Nagase S, Akasaka T, Adamowicz L, Lu X (2017) Eu@C72: computed comparable populations of two non-IPR isomers. Molecules 22:1053-1–1053-8

    Article  Google Scholar 

  74. Takata M, Nishibori E, Sakata M, Shinohara H (2002) Charge density level structures of endohedral metallofullerenes determined by synchrotron radiation powder method. New Diam Front Carb Technol 12:271–286

    CAS  Google Scholar 

  75. Jensen F (2017) Introduction to computational chemistry. Wiley, Chichester, p 319

    Google Scholar 

  76. Slanina Z (2004) Temperature development of mono- and hetero-clustering in saturated vapors. J Clust Sci 15:3–11

    Article  CAS  Google Scholar 

  77. Alcock CB, Itkin VP, Horrigan MK (1984) Vapor pressure equations for the metallic elements: 298-2500 K. Can Metallurg Quart 23:309–313

    Article  CAS  Google Scholar 

  78. Slanina Z, Uhlík F, Nagase S (2007) Computational evaluation of the relative production yields in the X@C74 series (X = Ca, Sr, Ba). Chem Phys Lett 440:259–262

    Article  CAS  Google Scholar 

  79. Gromov A, Krawez N, Lassesson A, Ostrovskii DI, Campbell EEB (2002) Optical properties of endohedral Li@C60. Curr App Phys 2:51–55

    Article  Google Scholar 

  80. Kobayashi K, Nagase S (1999) Bonding features in endohedral metallofullerenes. Topological analysis of the electron density distribution. Chem Phys Lett 302:312–316

    Article  CAS  Google Scholar 

  81. Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Akasaka T, Nagase S (2011) Computed stabilities in metallofullerene series: Al@C82, Sc@C82, Y@C82, and La@C82. Int J Quant Chem 111:2712–2718

    Article  CAS  Google Scholar 

  82. Peres T, Cao BP, Cui WD, Khong A, Cross RJ, Saunders M, Lifshitz C (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectr 210:241–247

    Article  Google Scholar 

  83. Suetsuna T, Dragoe N, Harneit W, Weidinger A, Shimotani H, Ito S, Takagi H, Kitazawa K (2002) Separation of N2@C60 and N@C60. Chem Eur J 8:5079–5083

    Article  CAS  PubMed  Google Scholar 

  84. Knapp C, Dinse K-P, Pietzak B, Waiblinger M, Weidinger A (1997) Fourier transform EPR study of N@C60 in solution. Chem Phys Lett 272:433–437

    Article  CAS  Google Scholar 

  85. Saunders M, Jiménez-Vázquez HA, Cross RJ, Poreda RJ (1993) Stable compounds of helium and Neon: He@C60 and Ne@C60. Science 259:1428–1430

    Article  CAS  PubMed  Google Scholar 

  86. Zhang R, Murata M, Aharen T, Wakamiya A, Shimoaka T, Hasegawa T, Murata Y (2016) Synthesis of a distinct water dimer inside fullerene C70. Nature Chem 8:435–441

    Article  CAS  Google Scholar 

  87. Slanina Z, Nagase S (2006) A computational characterization of N2@C60. Mol Phys 104:3167–3171

    Article  CAS  Google Scholar 

  88. Slanina Z, Uhlík F, Adamowicz L, Nagase S (2005) Computing fullerene encapsulation of non-metallic molecules: N2@C60 and NH3@C60. Mol Simul 31:801–806

    Article  CAS  Google Scholar 

  89. Slanina Z, Uhlík F, Nagase S, Lu X, Akasaka T, Adamowicz L (2016) Computed relative populations of D2(22)-C84 endohedrals with encapsulated monomeric and dimeric water. ChemPhysChem 17:1109–1111

    Article  CAS  PubMed  Google Scholar 

  90. Slanina Z, Uhlík F, Nagase S, Akasaka T, Lu X, Adamowicz L (2018) Cyclic water-trimer encapsulation into D2(22)-C84 fullerene. Chem Phys Lett 695:245–248

    Article  CAS  Google Scholar 

  91. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57

    Article  CAS  Google Scholar 

  92. Yang S, Liu F, Chen C, Jiao M, Wei T (2011) Fullerenes encaging metal clusters – cluster-fullerenes. Chem Commun 47:11822–11839

    Article  CAS  Google Scholar 

  93. Slanina Z, Uhlík F, Feng L, Akasaka T, Lu X, Adamowicz L (2019) Calculations of the Lu3N@C80 two-isomer equilibrium. Fulleren Nanotub Carb Nanostruct 27:382–386

    Article  CAS  Google Scholar 

  94. Shen W-Q, Bao L-P, Hu S-F, Gao X-J, Xie Y-P, Gao X-F, Huang W-H, Lu X (2018) Isolation and crystallographic characterization of Lu3N@C2n (2n = 80–88): cage selection by cluster size. Chem Eur J 24:16692–16698

    Article  CAS  PubMed  Google Scholar 

  95. Dunsch L, Yang SF, Zhang L, Svitova A, Oswald S, Popov AA (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132:5413–5421

    Article  CAS  PubMed  Google Scholar 

  96. Mercado BQ, Chen N, Rodriguez-Fortea A, Mackey MA, Stevenson S, Echegoyen L, Poblet JM, Olmstead MM, Balch AL (2011) The shape of the Sc-2(mu(2)-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc-2(mu(2)-S)@C-s(6)-C-82 and Sc-2(mu(2)-S)@C-3v(8)-C-82. J Am Chem Soc 133:6752–6760

    Article  CAS  PubMed  Google Scholar 

  97. Slanina Z, Uhlík F, Lee S-L, Mizorogi N, Akasaka T, Adamowicz L (2011) Calculated relative yields for Sc2S@C82 and Y2S@C82. Theor Chem Accounts 130:549–554

    Article  CAS  Google Scholar 

  98. Hao Y, Tang Q, Li X, Zhang M, Wan Y, Feng L, Chen N, Slanina Z, Adamowicz L, Uhlík F (2016) Isomeric Sc2O@C78 related by a single-step Stone-Wales transformation: key links in an unprecedented fullerene formation pathway. Inorg Chem 55:11354–11361

    Article  CAS  PubMed  Google Scholar 

  99. Slanina Z, Uhlík F, Feng L, Adamowicz L (2017) Sc2O@C78: calculations of the yield ratio for two observed isomers. Fulleren Nanotub Carb Nanostruct 25:124–127

    Article  CAS  Google Scholar 

  100. Slanina Z, Uhlík F, Pan C, Akasaka T, Lu X, Adamowicz L (2018) Computed stabilization for a giant fullerene endohedral: Y2C2@C1(1660)-C108. Chem Phys Lett 710:147–149

    Article  CAS  Google Scholar 

  101. Ervin KM, Gronert S, Barlow SE, Gilles MK, Harrison AG, Bierbaum VM, DePuy CH, Lineberger WC, Ellison GB (1990) Bond strengths of ethylene and acetylene. J Am Chem Soc 112:5750–5759

    Article  CAS  Google Scholar 

  102. Slanina Z, Ōsawa E (1997) Average bond dissociation energies of fullerene. Fuller Sci Technol 5:167–175

    Article  CAS  Google Scholar 

  103. Yu P, Shen W, Bao L, Pan C, Slanina Z, Lu X (2019) Trapping an unprecedented Ti3C3 unit inside the icosahedral C80 fullerene: a crystallographic survey. Chem Sci 10:10925–10930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Nagase S (2008) MPWB1K calculations of stepwise encapsulations: Lix@C60. Chem Phys Lett 463:121–123

    Article  CAS  Google Scholar 

  105. Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Nagase S (2007) Alkali-metal clusters encapsulated into fullerenes: computations on Lix@C60. J Comput Meth Sci Eng 7:541–547

    CAS  Google Scholar 

  106. Mardirossiana N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    Article  Google Scholar 

  107. Slanina Z, Uhlík F, Lee S-L, Wang B-C, Adamowicz L, Suzuki M, Haranaka M, Feng L, Lu X, Nagase S, Akasaka T (2014) Towards relative populations of non-isomeric metallofullerenes: La@C76(Td) vs. La2@C76(Cs,17490). Fulleren Nanotub Carb Nanostruct 22:299–306

    Article  CAS  Google Scholar 

  108. Suzuki M, Mizorogi N, Yang T, Uhlik F, Slanina Z, Zhao X, Yamada M, Maeda Y, Hasegawa T, Nagase S, Lu X, Akasaka T (2013) La2@Cs(17490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal-Pentalene interactions. Chem Eur J 19:17125–17130

    Article  CAS  PubMed  Google Scholar 

  109. Slanina Z, Uhlík F, Lee S-L, Adamowicz L, Kurihara H, Nikawa H, Lu X, Yamada M, Nagase S, Akasaka T (2014) Computations on metallofullerenes derivatized during extraction: La@C80-C6H3C12 and La@C82-C6H3Cl2. Fulleren Nanotub Carb Nanostruct 22:173–181

    Article  CAS  Google Scholar 

  110. Feng L, Rudolf M, Trukhina O, Slanina Z, Uhlík F, Lu X, Torres T, Guldi DM, Akasaka T (2015) Tuning intramolecular electron and energy transfer processes in novel conjugates of La2@C80 and electron accepting subphthalocyanines. Chem Commun 51:330–333

    Article  CAS  Google Scholar 

  111. Slanina Z, Uhlík F, Feng L, Akasaka T, Lu X, Adamowicz L (2020) Rotameric isomers of La2@C80 & dodecafluoro-subphthalocyanine conjugate: computational characterization. ECS J Solid State Sci Technol 9:061014

    Article  CAS  Google Scholar 

  112. Slanina Z, Uhlík F, Juha L, Tanabe K, Adamowicz L, Ōsawa E (2004) Computations on C84O: thermodynamic, kinetic and photochemical stability. J Mol Struct (Theochem) 684:129–133

    Article  CAS  Google Scholar 

  113. Eggen BR, Heggie MI, Jungnickel G, Latham CD, Jones R, Briddon PR (1996) Autocatalysis during fullerene growth. Science 272:87–90

    Article  CAS  Google Scholar 

  114. Slanina Z, Zhao X, Uhlík F, Ozawa M, Ōsawa E (2000) Computational modelling of the metal and other elemental catalysis in the Stone-Wales fullerene rearrangements. J Organomet Chem 599:57–61

    Article  CAS  Google Scholar 

  115. Slanina Z, Zhao X, Ozawa M, Adamowicz L, Ōsawa E (2000) Computational evaluations of the elemental-catalytical effects on the kinetics of the Stone-Wales isomerizations. In: Kamat PV, Guldi DM, Kadish KM (eds) Recent advances in the chemistry and physics of fullerenes and related materials: vol. 10 – Chemistry and physics of fullerenes and carbon nanomaterials. The Electrochemical Society, Pennington, pp 129–141

    Google Scholar 

  116. Walsh TR, Wales DJ (1998) Relaxation dynamics of C60. J Chem Phys 109:6691–6700

    Article  CAS  Google Scholar 

  117. Slanina Z (1982) Sequential isomerism of activated complexes and comparisons of theoretical and observed data: a general case of a unimolecular process with one intermediate. Z Phys Chem (Wiesbaden) 132:41–54

    Article  CAS  Google Scholar 

  118. Slanina Z (1983) Sequential isomerism of activated complexes: interfering versus noninterfering intermediate. Int J Quantum Chem 23:1553–1561

    Article  CAS  Google Scholar 

  119. Ōsawa E, Ueno H, Yoshida M, Slanina Z, Zhao X, Nishiyama M, Saito H (1998) Combined topological and energy analysis of the annealing process in fullerene formation. Stone-Wales interconversion pathways among IPR isomers of higher fullerenes. J Chem Soc Perkin Trans 2:943–950

    Article  Google Scholar 

  120. Lindemann FA (1922) Discussion on the radiation theory of chemical action. Trans Faraday Soc 17:598–599

    Article  Google Scholar 

  121. Hinshelwood CN (1926) On the theory of unimolecular reactions. Proc Roy Soc London A 113:230–233

    Article  CAS  Google Scholar 

  122. Bao JL, Zhang X, Truhlar DG (2016) Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation. Phys Chem Chem Phys 18:16659–16670

    Article  CAS  PubMed  Google Scholar 

  123. Levine RD (2005) Molecular reaction dynamics. Cambridge University Press, Cambridge, pp 215–224

    Book  Google Scholar 

  124. Irle S, Zheng G, Wang Z, Morokuma K (2006) The C60 formation puzzle solved: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J Phys Chem B 110:1453114545

    Article  Google Scholar 

  125. Deng Q, Heine T, Irle S, Popov AA (2016) Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metalcarbon bonding. Nanoscale 8:3796–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bao L, Yu P, Pan C, Shen W, Lu X (2019) Crystallographic identification of Eu@C2n (2n = 88, 86 and 84): completing a transformation map for existing metallofullerenes. Chem Sci 10:2153–2158

    Article  CAS  PubMed  Google Scholar 

  127. Feng L, Hao YJ, Liu AL, Slanina Z (2019) Trapping metallic oxide clusters inside fullerene cages. Acc Chem Res 52:1802–1811

    Article  CAS  PubMed  Google Scholar 

  128. Cai W, Alvarado J, Metta-Magaña A, Chen N, Echegoyen L (2020) Interconversions between uranium mono-metallofullerenes: mechanistic implications and role of asymmetric cages. J Am Chem Soc 142:1311213119

    Article  Google Scholar 

  129. Abella L, Mulet-Gas M, Rodriguez-Fortea A, Poblet JM (2016) La3N@C92: an endohedral metallofullerene governed by kinetic factors? Inorg Chem 55:3302–3306

    Article  CAS  PubMed  Google Scholar 

  130. Maeda Y, Tsuchiya T, Kikuchi T, Nikawa H, Yang T, Zhao X, Slanina Z, Suzuki M, Yamada M, Lian Y, Nagase S, Lu X, Akasaka T (2016) Effective derivatization and extraction of insoluble missing lanthanum metallofullerenes La@C2n (n = 36–38) with iodobenzene. Carbon 98:67–73

    Article  CAS  Google Scholar 

  131. Ulusoy IS, Wilson AK (2019) Slater and Gaussian basis functions and computation of molecular integrals. In: Blinder SM, House JE (eds) Mathematical physics in theoretical chemistry. Elsevier, Amsterdam, p 43

    Google Scholar 

  132. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406

    Article  CAS  PubMed  Google Scholar 

  133. Menon AS, Radom L (2008) Consequences of spin contamination in unrestricted calculations on open-shell species: effect of Hartree-Fock and Mpller-Plesset contributions in hybrid and double-hybrid density functional theory approaches. J Phys Chem A 112:13225–13230

    Article  CAS  PubMed  Google Scholar 

  134. Slanina Z, Uhlík F, Bao L, Akasaka T, Lu X, Adamowicz L (2019) Calculated relative populations for the Eu@C82 isomers. Chem Phys Lett 726:29–33

    Article  CAS  Google Scholar 

  135. Slanina Z, Uhlík F, Bao L, Akasaka T, Lu X, Adamowicz L (2020) Eu@C86 isomers: calculated relative populations. Fulleren Nanotub Carb Nanostruct 28:565–570

    Article  CAS  Google Scholar 

  136. Zhao S, Zhao P, Cai W, Bao L, Chen M, Xie Y, Zhao X, Lu X (2017) Stabilization of giant fullerenes C2(41)-C90, D3(85)-C92, C1(132)-C94, C2(157)-C69, and C1(175)-C98 by encapsulation of a large La2C2 cluster: the importance of cluster-cage matching. J Am Chem Soc 139:4724–4728

    Article  CAS  PubMed  Google Scholar 

  137. Zhao R, Yuan K, Zhao S, Zhao X, Ehara M (2017) Quantum chemical insight into La2C96: metal carbide fullerene La2C2@C94 versus dimetallofullerene La2@C96. Inorg Chem 56:11883–11890

    Article  CAS  PubMed  Google Scholar 

  138. Li Q-Z, Zheng J-J, He L, Nagase S, Zhao X (2018) La-La bonded dimetallofullerenes [La2@C2n]: species for stabilizing C2n (2n = 92–96) besides La2C2@C2n. Phys Chem Chem Phys 20:14671–14678

    Article  CAS  PubMed  Google Scholar 

  139. Hu SF, Shen WQ, Zhao P, Xu T, Slanina Z, Ehara M, Zhao X, Xie YP, Akasaka T, Lu X (2019) Crystallographic characterization of Er2C2@C2(43)-C90, Er2C2@C2(40)-C90, Er2C2@C2(44)-C90, and Er2C2@C4(21)-C90: the role of cage-shape on cluster configuration. Nanoscale 11:17319–17326

    Article  CAS  PubMed  Google Scholar 

  140. Liu FP, Spree L, Krylov DS, Velkos G, Avdoshenko SM, Popov AA (2019) Single-electron lanthanide-lanthanide bonds inside fullerenes toward robust redox-active molecular magnets. Acc Chem Res 52:2981–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Slanina Z, Uhlík F, Bao LP, Akasaka T, Lu X, Adamowicz L (2020) Calculated relative populations for the Eu@C84 isomers. Fulleren Nanotub Carb Nanostruct 29:144–148

    Article  Google Scholar 

  142. Slanina Z (1989) Some aspects of mathematical chemistry of equilibrium and rate processes: steps towards a completely non-empirical computer design of syntheses. J Mol Struct (THEOCHEM) 185:217–228

    Article  Google Scholar 

  143. Slanina Z, Uhlík F, Nagase S, Akasaka T, Adamowicz L, Lu X (2017) A computational characterization of CO@C60. Fulleren Nanotub Carb Nanostruct 25:624–629

    Article  CAS  Google Scholar 

  144. Slanina Z, Uhlík F, Feng L, Adamowicz L (2016) Evaluation of the relative stabilities of two non-IPR isomers of Sm@C76. Fulleren Nanotub Carb Nanostruct 24:339–344

    Article  CAS  Google Scholar 

  145. Yu YL, Slanina Z, Wang F, Yang Y, Lian YF, Uhlík F, Xin BF, Feng L (2020) Ho2O@D3 (85)-C92: highly stretched cluster dictated by a giant cage and unexplored isomerization. Inorg Chem 59:11020–11027

    Article  CAS  PubMed  Google Scholar 

  146. Popov AA (2017) Synthesis and molecular structures of endohedral fullerenes. In: Popov AA (ed) Endohedral fullerenes: electron transfer and spin. Springer, Cham, pp 1–34

    Chapter  Google Scholar 

  147. Slanina Z, Uhlík F, Adamowicz L, Akasaka T, Nagase S, Lu X (2017) Stability issues in computational screening of carbon nanostructures: illustrations on La endohedrals. Mol Simul 43:1472–1479

    Article  CAS  Google Scholar 

  148. Wang Y, Morales-Martínez R, Zhang X, Yang W, Wang Y, Rodriguez-Fortea A, Poblet JM, Feng L, Wang S, Chen N (2017) Unique four-electron metal-to-cage charge transfer of Th to a C82 fullerene cage: complete structural characterization of Th@C3v (8)-C82. J Am Chem Soc 139:5110–5116

    Article  CAS  PubMed  Google Scholar 

  149. Cai WT, Abella L, Zhuang JX, Zhang XX, Feng L, Wang YF, Morales-Martinez R, Esper R, Boero M, Metta-Magana A, Rodriguez-Fortea A, Poblet JM, Echegoyen L, Chen N (2018) Synthesis and characterization of non-isolated-pentagon-rule actinide endohedral metallofullerenes U@C1(17418)-C76, U@C1(28324)-C80, and Th@C1(28324)-C80: low-symmetry cage selection directed by a tetravalent ion. J Am Chem Soc 140:18039–18050

    Article  CAS  PubMed  Google Scholar 

  150. Wang YF, Morales-Martínez R, Cai WT, Zhuang JX, Yang W, Echegoyen L, Poblet JM, Rodríguez-Fortea A, Chen N (2019) Th@C1(11)-C86: an actinide encapsulated in an unexpected C86 fullerene cage. Chem Commun 55:9271–9274

    Article  CAS  Google Scholar 

  151. Cai W, Chen C-H, Chen N, Echegoyen L (2019) Fullerenes as nanocontainers that stabilize unique actinide species inside: structures, formation, and reactivity. Acc Chem Res 52:1824–1833

    Article  CAS  PubMed  Google Scholar 

  152. Zhao Y-X, Li M-Y, Zhao P, Ehara M, Zhao X (2019) New insight into U@C80: missing U@D3(31921)-C80 and nuanced enantiomers of U@C1(28324)-C80. Inorg Chem 58:141591416

    Article  Google Scholar 

  153. Hao D, Yang L, Wei Z, Hou Q, Li L, Jin P (2020) U2O@C76: non-isolated-pentagon-rule cages prevail with the U2O configuration determined by cage shape and dominated by multicenter bonds. Inorg Chem 59:70397048

    Article  Google Scholar 

  154. Sure R, Hansen A, Schwerdtfeger P, Grimme S (2017) Comprehensive theoretical study of all 1812 C60 isomers. Phys Chem Chem Phys 19:14296–14305

    Article  CAS  PubMed  Google Scholar 

  155. Huffman D, Krätschmer W (1990) Solid C60 – how we found it. MRS Proc 206:601–610

    Article  Google Scholar 

Download references

Acknowledgments

The reported research has been supported by the NSFC (21171061 & 51472095), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1014); by the Czech Science Foundation/GACR (P208/10/1724); by the Charles University Centre of Advanced Materials/CUCAM (CZ.02.1.01/0.0/0.0/15-003/0000417); and by the MetaCentrum (LM2010005) and CERIT-SC (CZ.1.05/3.2.00/08.0144) computing facilities. An initial phase of the research line was supported by the Alexander von Humboldt-Stiftung and the Max-Planck-Institut fur Chemie (Otto-Hahn-Institut).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenĕk Slanina .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Slanina, Z., Uhlík, F., Adamowicz, L. (2022). Theoretical Predictions of Fullerene Stabilities. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_23

Download citation

Publish with us

Policies and ethics