Skip to main content

Microbiome in Inflammatory Lung Diseases: Challenges and Future Prospects

  • Chapter
  • First Online:
Microbiome in Inflammatory Lung Diseases

Abstract

The human microbiome is broadly recognized to have a crucial role in various bodily mechanisms that impact immunological homeostasis, inflammation, and metabolic activity. A recent study has revealed about the presence of commensal microbiome in mucosal surface of human body. The gut microbiome has extensively researched its role in controlling host metabolism or alterations in various disease states. There is a knowledge gap about the bacteria that live on mucosal surfaces. Unfortunately, there is currently a scarcity of scientific data on the involvement of lung microbiota in pulmonary illnesses. Previously lungs were considered as a sterile organ, and lung illnesses were usually accompanied mostly by bacterial pathogenesis. Emerging research suggests microbiomes in respiratory tracts both the upper and lower along with their importance in respiratory diseases. The current discusses the possibility of microbial disturbance about several lung illnesses in this book chapter. (e.g., Asthma, COPD, Pneumonia, Viral infection). Such disorders may be related to metabolic and biochemical stress. The book chapter also aims to emphasize the microbiome’s function in lung illnesses using data from classical microbiology and microbiome literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferreira CM, Vieira AT, Vinolo MAR, Oliveira FA, Curi R, FDS M (2014) The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res 2014:689492

    PubMed  PubMed Central  Google Scholar 

  2. Power SE, O’Toole PW, Stanton C, Ross RP, Fitzgerald GF (2014) Intestinal microbiota, diet and health. Br J Nutr 111:387–402

    CAS  PubMed  Google Scholar 

  3. McHardy IH, Goudarzi M, Tong M, Ruegger PM, Schwager E, Weger JR, Graeber TG, Sonnenburg JL, Horvath S, Huttenhower C, McGovern DP, Fornace AJ, Borneman J, Braun J (2013) Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome 1:17

    PubMed  PubMed Central  Google Scholar 

  4. Jacobs JP, Braun J (2014) Immune and genetic gardening of the intestinal microbiome. FEBS Lett. https://doi.org/10.1016/j.febslet.2014.02.052

  5. Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gómez-Hurtado I, Santacruz A, Peiró G, Zapater P, Gutiérrez A, Pérez-Mateo M, Sanz Y, Francés R (2011) Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis. PLoS One 6:e23037

    PubMed  PubMed Central  Google Scholar 

  7. Maier L, Diard M, Sellin ME, Chouffane E-S, Trautwein-Weidner K, Periaswamy B, Slack E, Dolowschiak T, Stecher B, Loverdo C, Regoes RR, Hardt W-D (2014) Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during Salmonella typhimurium colitis. PLoS Pathog 10:e1004557

    PubMed  PubMed Central  Google Scholar 

  8. Dickson R, Erb-Downward J, Huffnagle G (2013) The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7:245–257

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dickson RP, Huffnagle GB (2015) The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog 11:e1004923

    PubMed  PubMed Central  Google Scholar 

  10. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187:1067–1075

    PubMed  PubMed Central  Google Scholar 

  11. Bourzac K (2014) The bacterial tightrope. Nature 516:S14–S16

    CAS  PubMed  Google Scholar 

  12. Hosgood HD III, Sapkota AR, Rothman N, Rohan T, Hu W, Xu J, Vermeulen R, He X, White JR, Wu G, Wei F (2014) The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen 55(8):643–651. https://doi.org/10.1002/em.21878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scales BS, Dickson RP, Huffnagle GB (2016) A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukoc Biol 100:1–8

    Google Scholar 

  14. Dwyer DNO, Dickson RP, Moore B (2016) The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 196:4839–4847

    Google Scholar 

  15. Stressmann FA, Rogers GB, Klem ER, Lilley AK, Donaldson SH, Daniels TW, Carroll MP, Patel N, Forbes B, Boucher RC, Wolfgang MC, Bruce KD (2011) Analysis of the bacterial communities present in lungs of patients with cystic fibrosis from American and British centers. J Clin Microbiol 49:281–291

    PubMed  Google Scholar 

  16. Wills-karp M, Santeliz J, Karp CL (2001) Revisiting the hygiene hypothesis. Nat Rev Immunol 1:69–75

    CAS  PubMed  Google Scholar 

  17. Risnes KR, Belanger K, Murk W, Bracken MB (2011) Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am J Epidemiol 173:310–318

    PubMed  Google Scholar 

  18. McKeever TM, Lewis SA, Smith C, Collins J, Heatlie H, Frischer M, Hubbard R (2002) Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the west midlands general practice research database. J Allergy Clin Immunol 109:43–50

    PubMed  Google Scholar 

  19. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One 6:e16384

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabrera-Rubio R, Garcia-Nunez M, Seto L, Anto JM, Moya A, Monso E, Mira A (2012) Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol 50:3562–3568

    PubMed  PubMed Central  Google Scholar 

  21. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One 7:e47305

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV, Cooper J, Sin DD, Mohn WW, Hogge JC (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:1073–1080

    PubMed  PubMed Central  Google Scholar 

  23. Huffnagle GB (2010) The microbiota and allergies/asthma. PLoS Pathog 6:1–3

    Google Scholar 

  24. Fagundes CT, Amaral FA, Vieira AT, Soares AC, Pinho V, Nicoli JR, Vieira LQ, Teixeira MM, Souza DG (2012) Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J Immunol 188:1411–1420

    CAS  PubMed  Google Scholar 

  25. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16:228–231

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon JY, Bernalier-Donadille A, Vasson MP, Filaire E (2017) Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol 2017:5035371

    PubMed  PubMed Central  Google Scholar 

  27. Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, Morelli L, Buccigrossi V, Lo Vecchio A, Ruberto E, Guarino A (2014) Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with lactobacillus gg: a randomised clinical trial. PLoS One 9:1–12

    Google Scholar 

  28. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129:434–440. 440.e1–2

    PubMed  Google Scholar 

  29. Sun Y, Cai Y, Huse SM, Knight R, Farmerie WG, Wang X, Mai V (2012) A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis. Brief Bioinform 13:107–121

    PubMed  Google Scholar 

  30. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77:3219–3226

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36:e120

    PubMed  PubMed Central  Google Scholar 

  32. Costello EEK, Lauber CCL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, Huffnagle GB (2014) Cell-associated bacteria in the human lung microbiome. Microbiome 2:28

    PubMed  PubMed Central  Google Scholar 

  34. Beck JM, Schloss PD, Venkataraman A, Twigg H, Jablonski KA, Bushman FD, Campbell TB, Charlson ES, Collman RG, Crothers K, Curtis JL, Drews KL, Flores SC, Fontenot AP, Foulkes MA, Frank I, Ghedin E, Huang L, Lynch SV, Morris A, Palmer BE, Schmidt TM, Sodergren E, Weinstock GM, Young VB (2015) Multicenter comparison of lung and oral microbiomes of HIV-infected and HIV-uninfected individuals. Am J Respir Crit Care Med. 192:1335–1344

    PubMed  PubMed Central  Google Scholar 

  35. Kelly BJ, Imai I, Bittinger K, Laughlin A, Fuchs BD, Bushman FD, Collman RG (2016) Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome 4:7

    PubMed  PubMed Central  Google Scholar 

  36. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963

    PubMed  PubMed Central  Google Scholar 

  37. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WOC (2010) Disordered microbial communities in asthmatic airways. PLoS One 5:e8578

    PubMed  PubMed Central  Google Scholar 

  38. Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, Wong GK-S (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459

    PubMed  PubMed Central  Google Scholar 

  39. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Charlson ES, Bittinger K, Chen J, Diamond JM, Li H, Collman RG, Bushman FD (2012) Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS One 7:e42786

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sethi S, Maloney J, Grove L, Wrona C, Berenson CS (2006) Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:991–998

    PubMed  PubMed Central  Google Scholar 

  42. Edwards FC, Truelove SC (1964) Course and prognosis of ulcerative colitis: part III complications. Gut 5(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kraft SC, Earle RH, Roesler M, Esterly JR (1976) Unexplained bronchopulmonary disease with inflammatory bowel disease. Arch Intern Med 136:454–459

    CAS  PubMed  Google Scholar 

  44. Munck A, Murciano D, Pariente R, Cezard J, Navarro J (1995) Latent pulmonary function abnormalities in children with Crohn’s disease. Eur Respir J 8:377–380

    CAS  PubMed  Google Scholar 

  45. Jess T, Loftus EV, Harmsen WS, Zinsmeister AR, Tremaine WJ, Melton LJ, Munkholm P, Sandborn WJ (2006) Survival and cause specific mortality in patients with inflammatory bowel disease: a long term outcome study in Olmsted County, Minnesota, 1940–2004. Gut 55:1248–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Keely S, Talley NJ, Hansbro PM (2012) Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol 5:7–18

    CAS  PubMed  Google Scholar 

  47. Somerville KW, Logan RF, Edmond M, Langman MJ (1984) Smoking and Crohn’s disease. Br Med J (Clin Res Ed) 289:954–956

    CAS  Google Scholar 

  48. Cosnes J (2004) Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol 18:481–496

    CAS  PubMed  Google Scholar 

  49. Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, Steurer-Stey C, Frei A, Frei P, Scharl M, Loessner MJ, Vavricka SR, Fried M, Schreiber S, Schuppler M, Rogler G (2013) Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 8:e59260

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosas-Salazar C, Shilts MH, Tovchigrechko A, Schobel S, Chappell JD, Larkin EK, Shankar J, Yooseph S, Nelson KE, Halpin RA, Moore ML, Anderson LJ, Peebles RS, Das SR, Hartert TV (2016) Differences in the nasopharyngeal microbiome during acute respiratory tract infection with human rhinovirus and respiratory syncytial virus in infancy. J Infect Dis 214:1924–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, Caporaso NE, Goedert JJ, Ravel J, Landi MT (2016) Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol 17:163

    PubMed  PubMed Central  Google Scholar 

  52. Jones JG, Lawler P, Crawley JCW, Minty BD, Hulands G, Veall N (1980) Increased alveolar epithelial permeability in cigarette smokers. Lancet 315:66–68

    Google Scholar 

  53. Moazed F, Burnham EL, Vandivier RW, Kane CMO, Shyamsundar M, Hamid U, Abbott J, Thickett DR, Matthay MA, Mcauley DF, Calfee CS (2016) Cigarette smokers have exaggerated alveolar barrier disruption in response to lipopolysaccharide inhalation. Thorax 71:1130–1136

    PubMed  Google Scholar 

  54. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric. Front Cell Neurosci. 9:392

    PubMed  PubMed Central  Google Scholar 

  55. Jungnickel C, Wonnenberg B, Karabiber O, Wolf A, Voss M, Wolf L, Honecker A, Kamyschnikow A, Herr C, Bals R, Beisswenger C (2015) Cigarette smoke-induced disruption of pulmonary barrier and bacterial translocation drive tumor-associated inflammation and growth. Am J Physiol Lung Cell Mol Physiol 309:L605–L613

    CAS  PubMed  Google Scholar 

  56. Gallacher DJ, Kotecha S (2016) Respiratory microbiome of new-born infants. Front Pediatr 4:10

    PubMed  PubMed Central  Google Scholar 

  57. Heikkila MP (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95:471–478

    CAS  PubMed  Google Scholar 

  58. Jost T, Lacroix C, Braegger C, Chassard C (2015) Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev 73:426–437

    PubMed  Google Scholar 

  59. Simon PM, Goode PL, Mobasseri A, Zopf D (1997) Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 65:750–757

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Biesbroek G, Tsivtsivadze E, Sanders EAM, Montijn R, Veenhoven RH, Keijser BJF, Bogaert D (2014) Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med 190:1283–1292

    PubMed  Google Scholar 

  61. Zhao J, Murray S, LiPuma JJ, Costello EK, Yatsunenko T, Kostic AD, Karlsson FH, Yoshimoto S, Arthur JC, Atarashi K, Koren O, Jansson J, Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK, Gajer P, Westermann AJ, Gorski SA, Vogel J, Sharma CM, Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA, Lemon KP, Armitage GC, Relman DA, Fischbach MA, Dethlefsen L, Relman DA, Jernberg C, Lofmark S, Edlund C, Jansson JK, Jakobsson HE, Jernberg C, Lofmark S, Edlund C, Jansson JK, Dethlefsen L, Huse S, Sogin ML, Relman DA, Zhao J, Konstan MW, Wagener JS, VanDevanter DR, Filkins LM, Nick JA, Cox MJ, Klepac-Ceraj V, van der Gast CJ, VanDevanter DR, LiPuma JJ, Schloss PD, Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ, Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R, Huse SM, Welch DM, Morrison HG, Sogin ML (2014) Modeling the impact of antibiotic exposure on human microbiota. Sci Rep 4:1694–1697

    Google Scholar 

  62. Gray LEK, O’Hely M, Ranganathan S, Sly PD, Vuillermin P (2017) The maternal diet, gut bacteria, and bacterial metabolites during pregnancy influence offspring asthma. Front Immunol 8:1–13

    Google Scholar 

  63. Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, Reynolds LA, Hacker L, Mohr J, Finlay BB, Zaph C, McNagny KM, Mohn WW (2018) Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 11:785–795

    CAS  PubMed  Google Scholar 

  64. Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L (2018) Microbiome and asthma. Asthma Res Pract 4:1

    PubMed  PubMed Central  Google Scholar 

  65. Bou Ghanem EN, Clark S, Du X, Wu D, Camilli A, Leong JM, Meydani SN (2015) The α- tocopherol form of vitamin E reverses age-associated susceptibility to Streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment. J Immunol 194:1090–1099

    CAS  PubMed  Google Scholar 

  66. Bou Ghanem EN, Lee JN, Joma BH, Meydani SN, Leong JM, Panda A (2017) The alpha- tocopherol form of vitamin E boosts elastase activity of human PMNs and their ability to kill Streptococcus pneumoniae. Front Cell Infect Microbiol 7:1–9

    Google Scholar 

  67. Brown RL, Sequeira RP, Clarke TB (2017) The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun. 8:1512

    PubMed  PubMed Central  Google Scholar 

  68. Han MK, Postma D, Mannino DM, Giardino ND, Buist S, Curtis JL, Martinez FJ (2007) Gender and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176:1179–1184

    PubMed  PubMed Central  Google Scholar 

  69. Dickson RP, Martinez FJ, Huffnagle GB (2014) The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384:691–702

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Adar SD, Huffnagle GB, Curtis JL (2016) The respiratory microbiome: an underappreciated player in the human response to inhaled pollutants? Ann Epidemiol 26:355–359

    PubMed  PubMed Central  Google Scholar 

  71. Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS, Schmid V, Buist S (2006) Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J 27:397–412

    CAS  PubMed  Google Scholar 

  72. Wedzicha JA, Donaldson GC (2003) Exacerbations of chronic obstructive pulmonary disease. Respir Care 48:1204–1213. discussion 1213–5

    PubMed  Google Scholar 

  73. Seemungal TAR, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA (2000) Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161:1608–1613

    CAS  PubMed  Google Scholar 

  74. Sethi S, Murphy TF (2008) Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 359:2355–2365

    CAS  PubMed  Google Scholar 

  75. Murphy TF, Brauer AL, Schiffmacher AT, Sethi S (2004) Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170:266–272

    PubMed  Google Scholar 

  76. Chen R, Lim JH, Jono H, Gu XX, Kim YS, Basbaum CB, Murphy TF, Li JD (2004) Nontypeable Haemophilus influenzae lipoprotein P6 induces MUC5AC mucin transcription via TLR2-TAK1-dependent p38 MAPK-AP1 and IKKβ-IκBα-NF-κB signaling pathways. Biochem Biophys Res Commun 324:1087–1094

    CAS  PubMed  Google Scholar 

  77. Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16:45–56. HHS Public Access

    CAS  PubMed  Google Scholar 

  78. Høiby N (1988) Haemophilus influenzae, Staphylococcus aureus, Pseudomonas cepacia, and Pseudomonas aeruginosa in patients with cystic fibrosis. Chest 94, 97S–102S

    Google Scholar 

  79. Beaume M, Köhler T, Greub G, Manuel O, Aubert J-D, Baerlocher L, Farinelli L, Buckling A, van Delden C, Achermann R, Amico P, Baumann P, Beldi G, Benden C, Berger C, Binet I, Bochud P-Y, Boely E, Bucher H, Bühler L, Carell T, Catana E, Chalandon Y, de Geest S, de Rougemont O, Dickenmann M, Duchosal M, Fehr T, Ferrari-Lacraz S, Garzoni C, Soccal PG, Giostra E, Golshayan D, Good D, Hadaya K, Halter J, Heim D, Hess C, Hillinger S, Hirsch HH, Hofbauer G, Huynh-Do U, Immer F, Klaghofer R, Koller M, Laesser B, Lehmann R, Lovis C, Marti H-P, Martin PY, Martinolli L, Meylan P, Mohacsi P, Morard I, Morel P, Mueller U, Mueller NJ, Mueller-McKenna H, Müller A, Müller T, Müllhaupt B, Nadal D, Pascual M, Passweg J, Ziegler CP, Rick J, Roosnek E, Rosselet A, Rothlin S, Ruschitzka F, Schanz U, Schaub S, Seiler C, Stampf S, Steiger J, Stirnimann G, Toso C, Tsinalis D, Venetz J-P, Villard J, Wick M, Wilhelm M, Yerly P (2017) Rapid adaptation drives invasion of airway donor microbiota by pseudomonas after lung transplantation. Sci Rep 7:40309

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, Karaoz U, Andersen GL, Brown R, Fujimura KE, Wu B, Tran D, Koff J, Kleinhenz ME, Nielson D, Brodie EL, Lynch SV (2010) Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One 5:e11044

    PubMed  PubMed Central  Google Scholar 

  81. Froidure A, Pilette C (2016) From the hygiene hypothesis to A20: the protective effect of endotoxins against asthma development. Clin Exp Allergy 46:192–193

    CAS  PubMed  Google Scholar 

  82. Foglia E, Meier MD, Elward A (2007) Ventilator-associated pneumonia in neonatal and pediatric intensive care unit patients. Clin Microbiol Rev 20:409–425

    PubMed  PubMed Central  Google Scholar 

  83. Mourani PM, Sontag MK (2017) Ventilator-associated pneumonia in critically ill children: a new paradigm. Pediatr Clin N Am 64:1039–1056

    Google Scholar 

  84. File TM (2003) Community-acquired pneumonia. Lancet 362:1991–2001

    PubMed  PubMed Central  Google Scholar 

  85. Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, van Gils E, Bruin J, Montijn R, Bonten M, Sanders E (2011) Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One 6:e17035

    CAS  PubMed  PubMed Central  Google Scholar 

  86. De Steenhuijsen Piters WAA, Huijskens EGW, Wyllie AL, Biesbroek G, Van Den Bergh MR, Veenhoven RH, Wang X, Trzcinski K, Bonten MJ, Rossen JWA, Sanders EAM, Bogaert D (2016) Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J 10:97–108

    PubMed  Google Scholar 

  87. Kageyama S, Takeshita T, Furuta M, Tomioka M, Asakawa M, Suma S, Takeuchi K, Shibata Y, Iwasa Y, Yamashita Y, Newman A (2017) Relationships of variations in the tongue microbiota and pneumonia mortality in nursing home residents. J Gerontol Ser A 00:1–6

    Google Scholar 

  88. Vogtmann E, Goedert JJ (2016) Epidemiologic studies of the human microbiome and cancer. Br J Cancer 114:237–242

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee SH, Sung JY, Yong D, Chun J, Kim SY, Song JH, Chung KS, Kim EY, Jung JY, Kang YA, Kim YS, Kim SK, Chang J, Park MS (2016) Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102:89–95

    PubMed  Google Scholar 

  90. Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E (2016) The gut microbiome in human immunodeficiency virus infection. BMC Med 14:83

    PubMed  PubMed Central  Google Scholar 

  91. Twigg HL, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, Day RB, Lin H, Gao X, Dong Q, Mi D, Katz BP, Sodergren E, Weinstock GM (2016) Effect of advanced HIV infection on the respiratory microbiome. Am J Respir Crit Care Med 194:226–235

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pichon M, Lina B, Josset L (2017) Impact of the respiratory microbiome on host responses to respiratory viral infection. Vaccine 5:40

    Google Scholar 

  93. Harris J-AS (2006) Infection control in pediatric extended care facilities. Infect Control Hosp Epidemiol 27:598–603

    PubMed  Google Scholar 

  94. Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M (2018) Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome 6:1–17

    CAS  Google Scholar 

  95. dos Borges LGA, Giongo A, de Pereira LM, Trindade FJ, Gregianini TS, Campos FS, Ghedin E, da Veiga ABG (2018) Comparison of the nasopharynx microbiome between influenza and non-influenza cases of severe acute respiratory infections: a pilot study. Heal Sci Reports:e47

    Google Scholar 

  96. Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L (2017) Impact of age, caloric restriction, and influenza infection on mouse gut microbiome: an exploratory study of the role of age-related microbiome changes on influenza responses. Front Immunol 8:1–11

    Google Scholar 

  97. Ederveen THA, Ferwerda G, Ahout IM, Vissers M, de Groot R, Boekhorst J, Timmerman HM, Huynen MA, van Hijum SAFT, de Jonge MI (2018) Haemophilus is overrepresented in the nasopharynx of infants hospitalized with RSV infection and associated with increased viral load and enhanced mucosal CXCL8 responses. Microbiome 6:1–13

    Google Scholar 

  98. Ivanov II, de Frutos RL, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, Vikram A, Good M, Schoenborn AA, Bibby K, Montelaro RC, Metzger DW, Gulati AS, Kolls JK (2016) Intestinal Interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44:659–671

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Segal LN, Alekseyenko A, Clemente JC, Berger K, Goldring R, Rom WN, Blaser MJ, Weiden MD (2014) Enrichment of lung microbiome with Supraglotic microbes is associated with increased pulmonary inflammation. Ann Am Thorac Soc 11:S71–S71

    Google Scholar 

  101. Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H (2015) The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol 136:874–884

    PubMed  PubMed Central  Google Scholar 

  102. Yadava K, Pattaroni C, Sichelstiel AK, Trompette A, Gollwitzer ES, Salami O, Von Garnier C, Nicod LP, Marsland BJ (2016) Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies. Am J Respir Crit Care Med 193:975–987

    CAS  PubMed  Google Scholar 

  103. Richmond BW, Brucker RM, Han W, Du RH, Zhang Y, Cheng DS, Gleaves L, Abdolrasulnia R, Polosukhina D, Clark PE, Bordenstein SR, Blackwell TS, Polosukhin VV (2016) Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun 7:1–12

    Google Scholar 

  104. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Nitert MD, Tremellen A, Tobin J, Wilkinson S, McSweeney C, O’Rourke P, Lingwood B, Kang A, Shanahan E, Fukuma N, Angel N, Foxcroft K (2016) Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes 65:2214–2223

    CAS  PubMed  Google Scholar 

  105. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    PubMed  Google Scholar 

  106. Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59:617–628

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Velasquez MT, Ramezani A, Manal A, Raj DS (2016) Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel) 8:326

    Google Scholar 

  108. Horáčková Š, Plocková M, Demnerová K (2017) Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv. 36:682–690

    PubMed  Google Scholar 

  109. Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Davies PL, Spiller OB, Beeton ML, Maxwell NC, Remold-O’Donnell E, Kotecha S (2010) Relationship of proteinases and proteinase inhibitors with microbial presence in chronic lung disease of prematurity. Thorax 65:246–251

    PubMed  Google Scholar 

  111. Cribbs SK, Park Y, Guidot DM, Martin GS, Brown LA, Lennox J, Jones DP (2014) Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res Hum Retrovir 30:579–585

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, Fitch A, Greenblatt RM, Kingsley L, Guidot DM, Ghedin E, Morris A (2016) Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome 4:3

    PubMed  PubMed Central  Google Scholar 

  113. Segal LN, Clemente JC, Tsay JJ, Koralov SB, Keller C, Wu BG, Li Y, Shen N, Ghedin E, Morris A, Diaz P, Huang L, Wikoff WR, Ubeda C, Artacho A, Weiden MD (2016) Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 1:1–24

    Google Scholar 

  114. Garg N, Wang M, Hyde E, da Silva RR, Melnik AV, Protsyuk I, Bouslimani A, Lim YW, Wong R, Humphrey G, Ackermann G, Spivey T, Brouha SS, Bandeira N, Lin GY, Rohwer F, Conrad DJ, Alexandrov T, Knight R, Dorrestein PC (2017) Three-dimensional microbiome and metabolome cartography of a diseased human lung. Cell Host Microbe 22:705–716.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jafari SA, Mehdizadeh-Hakkak A, Kianifar HR, Hebrani P, Ahanchianm H, Abbasnejad E (2013) Effects of probiotics on quality of life in children with cystic fibrosis; a randomized controlled trial. Iran J Pediatr 23:669–674

    PubMed  PubMed Central  Google Scholar 

  116. Lau AS, Yanagisawa N, Hor YY, Lew LC, Ong JS, Chuah LO, Lee YY, Choi SB, Rashid F, Wahid N, Sugahara H (2018) Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Benef Microbes 9, 61–70. doi: https://doi.org/10.3920/BM2017.0063

  117. Nikniaz Z, Nikniaz L, Bilan N, Somi MH, Faramarzi E (2017) Does probiotic supplementation affect pulmonary exacerbation and intestinal inflammation in cystic fibrosis: a systematic review of randomized clinical trials. World J Pediatr 13:307–313. https://doi.org/10.1007/s12519-017-0033-6

    Article  PubMed  Google Scholar 

  118. Koning CJ, Jonkers D, Smidt H, Rombouts F, Pennings HJ, Wouters E, Stobberingh E, Stockbrügger R (2010) The effect of a multispecies probiotic on the composition of the faecal microbiota and bowel habits in chronic obstructive pulmonary disease patients treated with antibiotics. Br J Nutr 103:1452–1460. https://doi.org/10.1017/S0007114509993497

    Article  CAS  PubMed  Google Scholar 

  119. Kong YH, Qi SHI, Na HAN, Zhang L, Zhang YY, Gao TX, Chen CHEN, Li YL (2016) Structural modulation of gut microbiota in rats with allergic bronchial asthma treated with recuperating lung decoction. Biomed Environ Sci 29(8):574–583

    CAS  PubMed  Google Scholar 

  120. Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, Morelli L, Buccigrossi V, Lo Vecchio A, Ruberto E, Guarino A (2014) Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 9(2):e87796

    PubMed  PubMed Central  Google Scholar 

  121. Khailova L, Baird CH, Rush AA, Barnes C & Wischmeyer PE (2017) Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia. Clin Nutr 36, 1549–1557. doi: https://doi.org/10.1016/j.clnu.2016.09.025

  122. Del Campo R, Garriga M, Perez-Aragon A, Guallarte P, Lamas A, Maiz L, Bayón C, Roy G, Cantón R, Zamora J, Baquero F (2014) Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 13:716–722. https://doi.org/10.1016/j.jcf.2014.02.007

    Article  PubMed  Google Scholar 

  123. Bazett M, Bergeron M, Haston CK (2016) Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model. Sci Rep 6:19189. https://doi.org/10.1038/srep19189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH (2015) Well balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res 14:5642–5651. https://doi.org/10.4238/2015.May.25.16

    Article  PubMed  Google Scholar 

  125. Dasari S, Kathera C, Janardhan A, Praveen Kumar A, Viswanath B (2017) Surfacing role of probiotics in cancer prophylaxis and therapy: a systematic review. Clin Nutr 36:1465–1472. https://doi.org/10.1016/j.clnu.2016.11.017

    Article  PubMed  Google Scholar 

  126. Zitvogel L, Daillere R, Roberti MP, Routy B, Kroemer G (2017) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15:465–478. https://doi.org/10.1038/nrmicro.2017.44

    Article  CAS  PubMed  Google Scholar 

  127. Aragon F, Carino S, Perdigon G, de Moreno de LeBlanc A (2015) Inhibition of growth and metastasis of breast cancer in mice by milk fermented with Lactobacillus casei CRL 431. J Immunother 38:185–196. https://doi.org/10.1097/CJI.0000000000000079

    Article  CAS  PubMed  Google Scholar 

  128. Tanasienko OA, Cheremshenko NL, Titova GP, Potebnya MG, Gavrilenko MM, Nagorna SS, Kovalenko NK (2005) Elevation of the efficacy of antitumor vaccine prepared on the base of lectines from B. subtilis B-7025 upon its combined application with probiotics in vivo. Exp Oncol 27:336–338

    CAS  PubMed  Google Scholar 

  129. Cheng M, Qian L, Shen G, Bian G, Xu T, Xu W, Shen G, Hu S (2014) Microbiota modulate tumoral immune surveillance in lung through a gammadeltaT17 immune cell-dependent mechanism. Cancer Res 74:4030–4041. https://doi.org/10.1158/0008-5472.CAN-13-2462

    Article  CAS  PubMed  Google Scholar 

  130. Zhu H, Li Z, Mao S, Ma B, Zhou S, Deng L, Liu T, Cui D, Zhao Y, He J, Yi C (2011) Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium infantis on Lewis lung cancer in mice. Cancer Gene Ther 18:884–896. https://doi.org/10.1038/cgt.2011.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sexauer WP, Hadeh A, Ohman-Strickland PA, Zanni RL, Varlotta L, Holsclaw D, Fiel S, Graff GR, Atlas A, Bisberg D, Hadjiliadis D (2015) Vitamin D deficiency is associated with pulmonary dysfunction in cystic fibrosis. J Cyst Fibros 14:497–506. https://doi.org/10.1016/j.jcf.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  132. Kanhere M, Chassaing B, Gewirtz AT, Tangpricha V (2018) Role of vitamin D on gut microbiota in cystic fibrosis. J Steroid Biochem Mol Biol 175:82–87. https://doi.org/10.1016/j.jsbmb.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  133. Li L, Krause L, Somerset S (2017) Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis. Clin Nutr 36:1097–1104. https://doi.org/10.1016/j.clnu.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  134. Li L, Somerset S (2018) Associations between flavonoid intakes and gut microbiota in a group of adults with cystic fibrosis. Nutrients 10:E1264. https://doi.org/10.3390/nu10091264

    Article  CAS  PubMed  Google Scholar 

  135. Bernard H, Desseyn JL, Bartke N, Kleinjans L, Stahl B, Belzer C, Knol J, Gottrand F, Husson MO (2015) Dietary pectin-derived acidic oligosaccharides improve the pulmonary bacterial clearance of Pseudomonas aeruginosa lung infection in mice by modulating intestinal microbiota and immunity. J Infect Dis 211:156–165. https://doi.org/10.1093/infdis/jiu391

    Article  CAS  PubMed  Google Scholar 

  136. Li L, Somerset S (2014) The clinical significance of the gut microbiota in cystic fibrosis and the potential for dietary therapies. Clin Nutr 33:571–580. https://doi.org/10.1016/j.clnu.2014.04.004

    Article  PubMed  Google Scholar 

  137. Mohamed-Hussein AA, Mohamed NA, Ibrahim M-EA (2007) Changes in pulmonary function in patients with ulcerative colitis. Respir Med 101:977–982

    PubMed  Google Scholar 

  138. Shah BR, Li B, Al Sabbah H, Xu W, Mráz J (2020) Effects of prebiotic dietary fibers and probiotics on human health: with special focus on recent advancement in their encapsulated formulations. Trends Food Sci Technol 102:178–192. 10.1016%2Fj.tifs.2020.06.010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, N., Thapa, K., Dua, K. (2022). Microbiome in Inflammatory Lung Diseases: Challenges and Future Prospects. In: Gupta, G., Oliver, B.G., Dua, K., Singh, A., MacLoughlin, R. (eds) Microbiome in Inflammatory Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-8957-4_19

Download citation

Publish with us

Policies and ethics