Skip to main content

Multi-objective Ant Colony Optimization: An Updated Review of Approaches and Applications

  • Chapter
  • First Online:
Advances in Machine Learning for Big Data Analysis

Abstract

Ant colony optimization (ACO) is one of the most representative metaheuristics derived from the broad concept known as swarm intelligence (SI) where the behavior of social insects is the main source of inspiration. Being a particular SI approach, the ACO metaheuristic is mainly characterized by its distributiveness, flexibility, capacity of interaction among simple agents, and its robustness. The ACO metaheuristic has been successfully applied to an important number of discrete and continuous single-objective optimization problems. However, this metaheuristic has shown a great potential to also cope with multi-objective optimization problems as evidenced by the several proposals currently available in that regard. This chapter is aimed at describing the most relevant and recent developments on the use of the ACO metaheuristic for solving multi-objective optimization problems. Additionally, we also derive a refined taxonomy of the types of ACO variants that have been used for multi-objective optimization and we include a review of some of their real-world applications. In the last part of the chapter, we provide some potential paths for further research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By “alternative” the author means, with respect to evolutionary algorithms.

  2. 2.

    Without loss of generality, we will assume only minimization problems.

  3. 3.

    The term local is used by the authors to refer to the current iteration.

  4. 4.

    Efficient frontier is the term used in operations research to denote the Pareto front of a problem.

  5. 5.

    Elitism, in the context of multi-objective metaheuristics, normally consists of using an external archive (usually called a “secondary population”) that can (or cannot) interact in different ways with the main (or “primary”) population of the multi-objective metaheuristic. The main purpose of this archive is to store all the non-dominated solutions generated throughout the search process, while removing those that become dominated later in the search (called local non-dominated solutions). The approximation of the Pareto-optimal set produced by an algorithm is thus the final contents of this archive. Practically all modern multi-objective evolutionary algorithms (i.e., those designed after 1999) are elitist [6].

References

  1. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco, California (2001)

    Google Scholar 

  2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence—From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York (1999). ISBN 0-19-513159-2

    Google Scholar 

  3. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press (2004). ISBN 0-262-04219-3

    Google Scholar 

  4. García-Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur. J. Oper. Res. 180, 116–148 (2007)

    Article  Google Scholar 

  5. Angus, D., Woodward, C.: Multiple objective ant colony optimisation. Swarm Intell. 3(1), 69–85 (2009)

    Article  Google Scholar 

  6. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd ed. Springer, New York (2007). ISBN 978-0-387-33254-3

    Google Scholar 

  7. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 26(1), 29–41 (1996)

    Google Scholar 

  8. Bilchev, G., Parmee, I.: The ant colony metaphor for searching continuous design spaces. In: Fogarty, T.C. (ed.) Evolutionary Computing. AISB Workshop, pp. 25–39. Springer, Sheffield (1995)

    Google Scholar 

  9. Monmarché, N., Venturini, G., Slimane, M.: On how pachycondyla apicalis ants suggest a new search algorithm. Future Gener. Comput. Syst. 16, 937–946 (2000)

    Article  Google Scholar 

  10. Li, J., Satofuka, N.: Optimization design of a compressor cascade airfoil using a Navier-stokes solver and genetic algorithms. Proc. Inst. Mech. Eng. Part A J. Power Energy 216(A2), 195–202 (2002)

    Article  Google Scholar 

  11. Dréo, J., Siarry, P.: A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) Proceedings of the Third International Workshop on Ant Algorithms—ANTS 2002, Brussels, Belgium, pp. 216–221. Lecture Notes in Computer Science, vol. 2463. Springer (2002)

    Google Scholar 

  12. Dréo, J., Siarry, P.: Continuous interacting ant colony algorithm based on dense heterarchy. Future Gener. Comput. Syst. 20(5), 841–856 (2004)

    Article  Google Scholar 

  13. Ling Chen, L.Q., Shen, J., Chen, H.: An improved ant colony algorithm in continuous optimization. J. Syst. Sci. Syst. Eng. 12(2), 224–235 (2003)

    Google Scholar 

  14. Pourtakdoust, S., Nobahari, H.: An extension of ant colony systems to continues optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) Proceedings of Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS Workshop 2004, Brussels, Belgium, pp. 294–301. Lecture Notes in Computer Science, vol. 3172. Springer (2004)

    Google Scholar 

  15. Kong, M., Tian, P.: A direct application of ant colony optimization to function optimization problem in continuous domain. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2006, Brussels, Belgium, pp. 324–331. Lecture Notes in Computer Science, vol. 4150. Springer (2006). ISBN 978-3-540-38482-3

    Google Scholar 

  16. Hu, X.-M., Zhang, J., Li, Y.: Orthogonal methods based ant colony search for solving continuous optimization problems. J. Comput. Sci. Technol. 23(1), 2–18 (2008)

    Google Scholar 

  17. Socha, K.: ACO for continuos and mixed-variable optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) Proceedings of Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS Workshop 2004, Brussels, Belgium, pp. 25–36. Lecture Notes in Computer Science, vol. 3172. Springer (2004)

    Google Scholar 

  18. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)

    Article  MathSciNet  Google Scholar 

  19. Leguizamón, G., Coello Coello, C.A.: An alternative \({\rm ACO}_{{\mathbb{R}}}\) algorithm for continuous optimization problems. In: Dorigo, M., et al. (eds.) Swarm Intelligence, 7th International Conference, ANTS’2010, pp. 48–59. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  20. Liao, T., Montes de Oca, M.A., Aydin, D., Stützle, T., Dorigo, M.: An incremental ant colony algorithm with local search for continuous optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, New York, NY, USA, pp. 125–132. Association for Computing Machinery (2011). ISBN 9781450305570. https://doi.org/10.1145/2001576.2001594

  21. Liao, T., Sttzle, T., de Oca, M.A.M., Dorigo, M.: A unified ant colony optimization algorithm for continuous optimization. Eur. J. Oper. Res. 234(3), 597–609 (2014). ISSN 0377-2217

    Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece , pp. 95–100(2001)

    Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  24. Angus, D.: Population-based ant colony optimisation for multi-objective function optimisation. In: Progress in Artificial Life, Third Australian Conference (ACAL’2007), Gold Coast, Australia, pp. 232–244. Lecture Notes in Computer Science, vol. 4828. Springer (2007)

    Google Scholar 

  25. Angus, D.: Crowding population-based ant colony optimization for the multi-objective travelling salesman problem. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM’2007), Honolulu, Hawaii, USA, pp. 333–340. IEEE Press (2007)

    Google Scholar 

  26. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph.D. thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)

    Google Scholar 

  27. Knowles, J.: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Fifth International Conference on Intelligent Systems Design and Applications (ISDA’2005), pp. 552–557. IEEE (2005)

    Google Scholar 

  28. Garcia-Najera, A., Bullinaria, J.A.: Extending ACO\(_R\) to solve multi-objective problems. In Coghill, G.M. (ed.) Proceedings of the UK Workshop on Computational Intelligence (UKCI 2007), London, UK. Imperial College (2007)

    Google Scholar 

  29. Coello Coello, C.A., Toscano Pulido, G., Salazar Lechuga, M.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Google Scholar 

  30. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on Evolutionary Computation (CEC’2008), Hong Kong, pp. 2424–2431. IEEE Service Center (2008)

    Google Scholar 

  31. Falcon-Cardona, J.G., Coello Coello, C.A.: A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intell. 11(1), 71–100 (2017)

    Google Scholar 

  32. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Google Scholar 

  33. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Google Scholar 

  34. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Google Scholar 

  35. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer (2005)

    Google Scholar 

  36. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Google Scholar 

  37. Liu, N., Huang, B., Pan, X.H.: Using the ant algorithm to derive Pareto fronts for multiobjective siting of emergency service facilities. Transp. Res. Rec.: J. Transp. Res. Board 1935, 120–129 (2005)

    Article  Google Scholar 

  38. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading, Massachusetts (1989)

    MATH  Google Scholar 

  39. Bui, L.T., Whitacre, J.M., Abbass, H.A.: Performance analysis of elitism in multi-objective ant colony optimization algorithms. In: 2008 Congress on Evolutionary Computation (CEC’2008), Hong Kong, pp. 1633–1640. IEEE Service Center (2008)

    Google Scholar 

  40. Benlian, X., Zhiquan, W.: A multi-objective-ACO-based data association method for bearings-only multi-target tracking. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1360–1369 (2007)

    Article  Google Scholar 

  41. Mora, A.M., Guervós, J.J.M., Millán, C., Torrecillas, J., Laredo, J.L.J., Valdivieso, P.A.C.: Comparing ACO algorithms for solving the bi-criteria military path-finding problem. In: Costa, F.A., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) Advances in Artificial Life. 9th European Conference (ECAL’2007), Lisbon, Portugal, 10–14 September 2007, pp. 665–674. Lecture Notes in Computer Science, vol. 4648 (2007). Springer. ISBN 978-3-540-74912-7

    Google Scholar 

  42. Mora, A., Merelo, J., Millan, C., Torrecillas, J., Laredo, J.: CHAC. A MOACO algorithm for computation of bi-criteria military unit path in the battlefield. In: Pelta, D., Krasnogor, N. (eds.) Proceedings of the First Workshop in Nature Inspired Cooperative Strategies for Optimization (NICSO’06), Granada, Spain, June 2006, pp. 85–96 (2006)

    Google Scholar 

  43. Mora, A.M., Merelo, J.J., Millan, C., Torrecillas, J., Laredo, J., Castillo, P.: Enhancing a MOACO for solving the bi-criteria pathfinding problem for a military unit in a realistic battlefield. In: Applications of Evolutionary Computing. EvoWorkshops 2007: EvoCOMNET, EvoFIN, EvoIASP, EvoINTERACTION, EvoMUSART, EvoSTOC and EvoTRANSLOG, Valencia, Spain, April 2007, pp. 712–721. Lecture Notes in Computer Science, vol. 4448. Springer (2007)

    Google Scholar 

  44. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing problem with time windows. In: Proceedings of the 21st IASTED International Conference on Applied Informatics, Innsbruck, Austria, February 2003, pp. 97–102. IASTED Press (2003)

    Google Scholar 

  45. McMullen, P.R., Tarasewich, P.: Multi-objective assembly line balancing via a modified ant colony optimization technique. Int. J. Prod. Res. 44, 27–42 (2006)

    Article  Google Scholar 

  46. Xing, L.-N., Chen, Y.-W., Yang, K.-W.: Interactive fuzzy multi-objective ant colony optimization with linguistically quantified decision functions for flexible job shop scheduling problems. In: FBIT ’07: Proceedings of the 2007 Frontiers in the Convergence of Bioscience and Information Technologies, Washington, DC, USA, pp. 801–806. IEEE Computer Society (2007). ISBN 978-0-7695-2999-8. http://dx.doi.org/10.1109/FBIT.2007.18

  47. Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Applications of Evolutionary Computing. EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, Kinsale, Ireland, April 2002, pp. 72–81. Lecture Notes in Computer Science, vol. 2279. Springer (2002)

    Google Scholar 

  48. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective optimization problems. In: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), vol. 1, pp. 450–457. IEEE Computer Society Press (2007)

    Google Scholar 

  49. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, pp. 416–423. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  50. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Google Scholar 

  51. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Google Scholar 

  52. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99–107 (1992)

    Article  Google Scholar 

  53. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Hillsdale, New Jersey, pp. 93–100. Lawrence Erlbaum (1985)

    Google Scholar 

  54. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)

    Google Scholar 

  55. Afshar, A., Sharifi, F., Jalali, M.: Non-dominated archiving multi-colony ant algorithm for multi-objective optimization: application to multi-purpose reservoir operation. Eng. Optim. 41(4), 313–325 (2009)

    Google Scholar 

  56. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Google Scholar 

  57. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  58. Eppe, S.: Integrating the decision maker’s preferences into multi objective ant colony optimization. In: Hutter, F., de Oca, M.M. (eds.) 2nd Doctoral Symposium on Engineering Stochastic Local Search Algorithms, SLS 2009, pp. 56–60 (2009)

    Google Scholar 

  59. Brans, J.-P., Mareschal, B.: PROMETHEE methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis. State of the Art Surveys, pp. 163–195. Springer, New York (2005)

    Google Scholar 

  60. Chica, M., Cordón, Ó., Damas, S., Pereira, J., Bautista, J.: Incorporating preferences to a multi-objective ant colony algorithm for time and space assembly line balancing. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F. (eds.) Ant Colony Optimization and Swarm Intelligence. 6th International Conference, ANTS 2008. Proceedings, Brussels, Belgium, pp. 331–338. Springer (2008)

    Google Scholar 

  61. Chica, M., Cordon, O., Damas, S., Bautista, J.: Multiobjective constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search. Inf Sci. 180(18), 3465–3487 (2010)

    Google Scholar 

  62. Chica, M., Cordón, Ó., Damas, S., Bautista, J.: Integration of an EMO-based preference elicitation scheme into a multi-objective ACO algorithm for time and space assembly line balancing. In: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM’2009), Nashville, TN, USA, 30 March–2 April 2009, pp. 157–162. IEEE Press (2009). ISBN 978-1-4244-2764-2

    Google Scholar 

  63. Deb, K.: Solving goal programming problems using multi-objective genetic algorithms. In: 1999 IEEE Congress on Evolutionary Computation (CEC’99), Washington, D.C., July 1999, pp. 77–84. IEEE Service Center (1999)

    Google Scholar 

  64. Branke, J., Deb, K.: Integrating user preferences into evolutionary multi-objective optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 461–477. Springer, Berlin, Heidelberg (2005). ISBN 3-540-22902-7

    Google Scholar 

  65. Häckel, S., Fischer, M., Zechel, D., Teich, T.: A multi-objective ant colony approach for Pareto-optimization using dynamic programming. In: 2008 Genetic and Evolutionary Computation Conference (GECCO’2008), Atlanta, USA, July 2008, pp. 33–40. ACM Press (2008). ISBN 978-1-60558-131-6

    Google Scholar 

  66. Chaharsooghi, S.K., Kermani, A.H.M.: An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP). Appl. Math. Comput. 200(1), 167–177 (2008)

    Google Scholar 

  67. Chaharsooghi, S.K., Kermani, A.H.M.: An intelligent multi-colony multi-objective ant colony optimization (ACO) for the 0-1 Knapsack problem. In: 2008 IEEE Congress on Evolutionary Computation (CEC’2008), Hong Kong, June 2008, pp. 1195–1202. IEEE Service Center (2008)

    Google Scholar 

  68. Vieira, S.M., Sousa, M.C., Runkler, T.A.: Multi-criteria ant feature selection using fuzzy classifiers. In: Coello Coello, C.A., Dehuri, S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data Mining, Chapter 2, pp. 19–36. Studies in Computational Intelligence, vol. 242. Springer, Berlin (2009)

    Google Scholar 

  69. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  70. Yang, Y., Wu, G., Chen, J., Dai, W.: Multi-objective optimization based on ant colony optimization in grid over optical burst switching networks. Expert Syst. Appl. 37(2), 1769–1775 (2010)

    Google Scholar 

  71. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, California, June 1989, pp. 42–50. Morgan Kaufmann Publishers (1989)

    Google Scholar 

  72. Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and ant colony. IEEE Trans. Cybern. 43(6), 1845–1859 (2013)

    Google Scholar 

  73. Coello Coello, C.A., Cruz Cortés, N.: Solving multiobjective optimization problems using an artificial immune system. Genet. Program. Evol. Mach. 6(2), 163–190 (2005)

    Google Scholar 

  74. Mora, A., Garcia-Sanchez, P., Merelo, J., Castillo, P.: Pareto-based multi-colony multi-objective ant colony optimization algorithms: an island model proposal. Soft Comput. 17(7), 1175–1207 (2013)

    Google Scholar 

  75. Mansour, I.B., Alaya, I.: Indicator based ant colony optimization for multi-objective Knapsack problem. Procedia Comput. Sci. 60, 448–457 (2015)

    Article  Google Scholar 

  76. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: X.Y. et al. (eds.) Parallel Problem Solving from Nature—PPSN VIII, Birmingham, UK, September 2004, pp. 832–842. Lecture Notes in Computer Science, vol. 3242. Springer (2004)

    Google Scholar 

  77. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative study. In: Eiben, A.E. (ed.) Parallel Problem Solving from Nature V, pp. 292–301. Springer, Amsterdam (1998)

    Google Scholar 

  78. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Google Scholar 

  79. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Google Scholar 

  80. Moncayo-Martinez, L.A., Zhang, D.Z.: Multi-objective ant colony optimisation: a meta-heuristic approach to supply chain design. Int. J. Product. Econ 131(1), 407–420 (2011)

    Google Scholar 

  81. He, Y.-J., Ma, Z.-F.: Optimal design of linear sensor networks for process plants: a multi-objective ant colony optimization approach. Chemometr. Intell. Lab. Syst. 135, 37–47 (2014). ISSN 0169-7439

    Google Scholar 

  82. Areekijseree, K., Achalakul, T.: Volunteered mobile sourcing with multi-objective ant colony optimization. In: 2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE), May 2014, pp. 248–253. https://doi.org/10.1109/JCSSE.2014.6841875

  83. Belmecheri-Yalaoui, F., Yalaoui, F., Amodeo, L.: Multi-objective ant colony optimization method to solve container terminal problem. In: Benyoucef, L., Hennet, J.-C., Tiwari, M.K. (eds.) Applications of Multi-criteria and Game Theory Approaches: Manufacturing and Logistics, pp. 107–122. Springer, London (2014). ISBN 978-1-4471-5295-8

    Google Scholar 

  84. Huang, L., Zhang, B., Yuan, X., Zhang, C., Ma, A.: A research of multi-objective service selection problem based on MOACS algorithm. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, August 2016, pp. 259–264. IEEE Press (2016). ISBN 978-1-5090-4094-0

    Google Scholar 

  85. Zhu, L., Tang, R., Tao, Y., Ren, M., Xue, L.: Multi-objective ant colony optimization algorithm based on load balance. In: Cloud Computing and Security, Second International Conference, ICCCS 2016, Nanjing, China, 29–31 July 2016, pp. 193–205. Lecture Notes in Computer Science, vol. 10039. Springer (2016). ISBN: 978-3-319-48670-3

    Google Scholar 

  86. Zhu, D.Z., Werner, P.L., Werner, D.H.: Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm. IEEE Trans. Antennas Propag. 65(12), 7137–7149 (2017)

    Google Scholar 

  87. Khelifa, B., Laouar, M.R.: Urban projects planning by multi-objective ant colony optimization algorithm. In: Proceedings of the 8th International Conference on Information Systems and Technologies, New York, NY, USA. ACM Press (2018). ISBN 978-1-45036404-1. Article no: 11

    Google Scholar 

  88. Kubil, V.N., Mokhov, V.A., Grinchenkov, D.V.: Multi-objective ant colony optimization for multi-depot heterogenous vehicle routing problem. In: 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia. IEEE Press (2018). ISBN 978-1-5386-4308-2

    Google Scholar 

  89. Juang, C., Jhan, Y., Chen, Y., Hsu, C.: Evolutionary wall-following hexapod robot using advanced multiobjective continuous ant colony optimized fuzzy controller. IEEE Trans. Cogn. Dev. Syst. 10(3), 585–594 (2018)

    Google Scholar 

  90. Lin, D., He, L., Feng, X., Luo, W.: Niching Pareto ant colony optimization algorithm for bi-objective pathfinding problem. IEEE Access 6, 21184–21194 (2018). https://doi.org/10.1109/ACCESS.2018.2822824. ISSN 2169-3536

  91. Xu, J., Fortes, J.A.B.: Multi-objective virtual machine placement in virtualized data center environments. In: 2010 IEEE/ACM International Conference on Green Computing and Communications International Conference on Cyber, Physical and Social Computing, pp. 179–188 (2010). https://doi.org/10.1109/GreenCom-CPSCom.2010.137

  92. Raquel, C.R., Naval, Jr., P.C.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Beyer, H.-G. et al. (eds.) 2005 Genetic and Evolutionary Computation Conference (GECCO’2005), New York, USA, vol. 1, pp. 257–264. ACM Press (2005)

    Google Scholar 

  93. Van Veldhuizen, D. A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 144–173 (2003)

    Google Scholar 

  94. Nebro, A., Luna, F., Talbi, E.-G., Alba, E.: Parallel multiobjective optimization. In: Alba, E. (ed.) Parallel Metaheuristics, pp. 371–394. Wiley-Interscience, New Jersey (2005). ISBN 13-978-0-471-67806-9

    Google Scholar 

  95. Goh, C.-K., Ong, Y.-S., Tan, K.C. (eds.): Multi-objective Memetic Algorithms. Springer, Berlin (2009). ISBN 978-3-540-88050-9

    Google Scholar 

  96. López-Ibáñez, M., Stützle, T.: The automatic design of multiobjective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

    Google Scholar 

Download references

Acknowledgements

Carlos A. Coello Coello acknowledges support from CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la Ciencia) and from a SEP-Cinvestav grant (application no. 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Coello Coello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Falcón-Cardona, J.G., Leguizamón, G., Coello Coello, C.A., Castillo Tapia, M.G. (2022). Multi-objective Ant Colony Optimization: An Updated Review of Approaches and Applications. In: Dehuri, S., Chen, YW. (eds) Advances in Machine Learning for Big Data Analysis. Intelligent Systems Reference Library, vol 218. Springer, Singapore. https://doi.org/10.1007/978-981-16-8930-7_1

Download citation

Publish with us

Policies and ethics