Skip to main content

Using the CFD Code HySol to Calculate High-Speed Flows

  • Conference paper
  • First Online:
Advances in Theory and Practice of Computational Mechanics

Abstract

A high-fidelity CFD code hySol is developed based on high resolution Godunov method to simulate supersonic flows using 3D unstructured grids. It is designed for accurately simulating laminar and turbulent flows with shock waves and their interactions in non–inertial reference frame. The chapter provides the experience of developing the CFD code hySol, the main features of which are presented, including a brief description of both mathematical and numerical aspects. Verification and numerical simulations are illustrated using several examples including the Prandtl–Meyer flow, the 3D flow around a sharp wedge, and the flow around the standard ballistic model HB–2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrov, M.N., Tambova, A.A., Titarev, V.A., Utyuzhnikov, S.V., Chikitkin, A.V.: FlowModellium software package for calculating high-speed flows of compressible fluid. Comput. Math. Math. Phys. 58(11), 1865–1886 (2018)

    Article  MathSciNet  Google Scholar 

  2. Emelyanov, V., Karpenko. A., Volkov. K.: Development and acceleration of unstructured mesh based CFD solver. Progr. Flight Phys. 9, 387–408 (2017)

    Google Scholar 

  3. Ermakov, M.: Hypersonic flow modeling past an aircraft on “Lomonosov” supercomputer. Phys. Chem. Kinet. Gas Dyn. 14(4), http://chemphys.edu.ru/issues/2013-14-4/articles/422/ (in Russian) (2013)

  4. Surzhikov, S.T.: Validation of computational code UST3D by the example of experimental aerodynamic data. J. Phys. Conf. Ser. 815(1), 012023 (2017)

    Google Scholar 

  5. Borovikov, S.N., Ivanov, I.E., Kryukov, I.A.: Modeling three-dimensional ideal gas flows using tetrahedral grids. Mat. Model. 18(8), 37–48 (in Russian) (2006)

    Google Scholar 

  6. Borovikov, S.N., Kryukov, I.A., Ivanov, I.E.: An approach for Delaunay tetrahedralization of bodies with curved boundaries. In: Hanks, B.W. (ed.) Proceedings of the 14th International Meshing Roundtable, pp. 221–237. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  7. Kotov, M., Kryukov, I., Ruleva, L., Solodovnikov, S., Surzhikov, S.: The incoming flow investigation around geometric elements in hypersonic shock tube. AIAA Paper 2016–0312 (2016)

    Google Scholar 

  8. Kotov, M., Kryukov, I., Ruleva, L., Solodovnikov, S.: The investigation of shock-wave interaction with aerodynamic models. AIAA Paper 2017–0262 (2017)

    Google Scholar 

  9. Ermakov, M.K., Kryukov, I.A.: Supercomputer modeling of flow past hypersonic flight vehicles. J. Phys. Conf. Ser. 815, 012016 (2017)

    Google Scholar 

  10. Makeich, G.S., Kryukov, I.A.: Aerodynamics and flight dynamics simulation of Basic Finner supersonic flight in aeroballistic experiment. J. Phys. Conf. Ser. 1009, 012009 (2018)

    Google Scholar 

  11. Cariglino, F., Caresola, N., Arino, R.: External aerodynamics simulations in rotating frame of reference. Int. J. Aerosp. Eng., 654037 (2014)

    Google Scholar 

  12. Gledhill, I.M.A., Forsberg, K., Eliasson, P., Baloyi, J., Nordström, J.: Investigation of acceleration effects on missile aerodynamics using computational fluid dynamics. Aerosp. Sci. Tech. 13(4–5), 197–203 (2009)

    Article  Google Scholar 

  13. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ia., Kraiko, A.N., Prokopov, G.P.: Numerical solution of multidimensional problems of gas dynamics. Nauka, Moscow (in Russian) (1976)

    Google Scholar 

  14. Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. AIAA Paper 1989–0366 (1989)

    Google Scholar 

  15. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  16. Morinishi, K., Satofuka, N.: Convergence acceleration of the rational Runge-Kutta scheme for the Euler and Navier-Stokes equations. In: ISCFD Nagoya 1989—International Symposium on Computational Fluid Dynamics, pp. 131–136. Nagoya, Japan, Japan Society of Computational Fluid Dynamics (1989)

    Google Scholar 

  17. Gottlieb, J.J., Groth, C.P.T.: Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gases. J. Comput. Phys. 78(2), 437–458 (1988)

    Article  Google Scholar 

  18. Dukowicz, J.K.: General, Non-iterative Riemann solver for Godunov’s method. J. Comput. Phys. 61(1), 119–137 (1985)

    Article  MathSciNet  Google Scholar 

  19. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov–type scheme for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  Google Scholar 

  20. Roe, P.L.: The use of Riemann problem in finite difference schemes. In: Reynolds, W.C., MacCormack, R.W. (eds) Seventh International Conference on Numerical Methods in Fluid Dynamics. LNP, vol., pp. 354–359. Springer, Berlin, Heidelberg (1981)

    Google Scholar 

  21. Rieper, F.: A low–Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 230(13), 5263–5287 (2011)

    Article  MathSciNet  Google Scholar 

  22. Kermani, M., Plett, E.: Modified entropy correction formula for the Roe scheme. 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001–83. Reno, NV, U.S.A. (2001)

    Google Scholar 

  23. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gasdynamic equations with application to finite–difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MathSciNet  Google Scholar 

  24. Stiriba, Y.: A nonlinear flux split method for hyperbolic conservation laws. J. Comput. Phys. 176(1), 20–39 (2002)

    Article  MathSciNet  Google Scholar 

  25. Donat, R., Marquina, A.: Capturing shock reflections: an improved flux formula. J. Comput. Phys. 125(1), 42–58 (1996)

    Article  MathSciNet  Google Scholar 

  26. Yin, Z., Ge, X.: The difference method of 2–dimensional Euler equations with flux vector splitting. In: Hou, Z. (ed.) Measuring Technology and Mechatronics Automation in Electrical Engineering. LNEE, vol. 135, pp. 485–491. Springer, New York, NY (2012)

    Chapter  Google Scholar 

  27. van Leer, B.: Flux–vector splitting for the Euler equations. In: Krause, E. (ed.) Eighth International Conference on Numerical Methods in Fluid Dynamics, LNP, vol. 170, pp. 507–512. Aachen, Germany (1982)

    Chapter  Google Scholar 

  28. Liou, M.-S., Steffen, Jr.C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993)

    Google Scholar 

  29. Venkatakrishnan, V.: Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118(1), 120–130 (1995)

    Article  Google Scholar 

  30. Michalak, C., Ollivier-Gooch, C.: Accuracy Preserving limiter for the high–order accurate solution of the Euler equations. J. Comput. Phys. 228(23), 8693–8711 (2012)

    Article  MathSciNet  Google Scholar 

  31. Choi, H., Liu, J.G.: The reconstruction of upwind fluxes for conservation laws: Its behavior in dynamic and steady state calculations. J. Comput. Phys. 144(2), 237–256 (1998)

    Article  MathSciNet  Google Scholar 

  32. Haselbacher, A., Blazek, J.: Accurate and efficient discretization of Navier-Stokes equations on mixed grids. AIAA J. 38(11), 2094–2102 (2000)

    Article  Google Scholar 

  33. Weiss, J.M., Maruszewski, J.P., Smith, W.A.: Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA J. 37(1), 29–36 (1999)

    Article  Google Scholar 

  34. Anderson, Jr. J.D.: Hypersonic and high-temperature gas dynamics. 3rd edn., AIAA (2019)

    Google Scholar 

  35. Gray, J.D.: Summary report on aerodynamic characteristics of standard models HB-1 and HB-2. AEDC-TDR-64–137 (1964)

    Google Scholar 

  36. Kuchi-Ishi, S., Watanabe, S., Nagai, S., Tsuda, S., Koyama, T., Hirabayashi, N., Sekine, H., Hozumi, K.: Comparative force/heat flux measurements between JAXA hypersonic test facilities using standard model HB-2 (Part 1:1.27 m hypersonic wind tunnel results). JAXA Research and Development Report JAXA-RR-04–035E (2005)

    Google Scholar 

  37. Adamov, N.P., Vasenev, L.G., Zvegintsev, V.I., Mazhul, I.I., Nalivaichenko, D.G., Novikov, A.V., Kharitonov, A.M., Shpak, S.I.: Characteristics of the AT-303 hypersonic wind tunnel. Part 2. Aerodynamics of the HB-2 Reference Model. Thermophys. Aeromech. 13, 157–171 (2006)

    Google Scholar 

Download references

Acknowledgements

The work was performed within the framework of the Government program of basic research of the Russian academy of sciences (contract # AAAA−A20−120011690135−5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Kryukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kryukov, I.A., Ivanov, I.E., Larina, E.V. (2022). Using the CFD Code HySol to Calculate High-Speed Flows. In: Favorskaya, M.N., Nikitin, I.S., Severina, N.S. (eds) Advances in Theory and Practice of Computational Mechanics. Smart Innovation, Systems and Technologies, vol 274. Springer, Singapore. https://doi.org/10.1007/978-981-16-8926-0_5

Download citation

Publish with us

Policies and ethics