Skip to main content

Preparation, Mechanical Properties and Thermal Analysis of Basalt Fiber Reinforced with Polypropylene (BFRPP) Composites

  • Chapter
  • First Online:
Bio-Fiber Reinforced Composite Materials

Part of the book series: Composites Science and Technology ((CST))

  • 520 Accesses

Abstract

Polypropylene considered to be one of the evolving polymers in the locomotive area, besides several investigators primarily concentrating their study on polypropylene composites at present being advantageous in numerous confronting environmental challenges at present situation. The industrial and research applications of composites reinforced with natural fibers have been increased owing to excellent compensations when compared to synthetic fibers. Currently numerous manufacturers in automobile sector concentrate on eco-friendly automobile parts production that can reduce the production cost, besides improved fuel efficiency. The current study is considered based on the fabrication of basalt / polypropylene composite produced through a combined method of hand lay-up techniques. To explore the glass transition temperature (Tg) of the composite thermogravimetric (TGA) analysis was employed. Three-point bending experiment and tensile tests of polypropylene/basalt composites were investigated depending upon the number of basalt fabric layers. The bonding between matrix and basalt fiber at the interface is superior as revealed through SEM and EDX microscopy. The thermal resistance of basalt fibers were optimum at temperature range of 30–900 °C as found through thermogravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller L, Soulliere K, Sawyer-Beaulieu S, Tseng S, Tam E (2014) Challenges and alternatives to plastics recycling in the automotive sector. Materials (Basel) 7(8):5883–5902

    Article  Google Scholar 

  2. Živković I, Fragassa C, Pavlović A, Brugo T (2017) Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/BF reinforced green composites. Compos B Eng 111:148–164

    Article  Google Scholar 

  3. Fiorea V, Scalicia T, Di Bellab G, Valenzaa A (2015) A review on basalt fibre and its composites. Compos B Eng 74:74–94

    Article  Google Scholar 

  4. Konstantinos Karvanis, Sona Rusnáková, OndrejKrejcí, Milan Žaludek, Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites, Polymers, 12, 1785

    Google Scholar 

  5. Fiore V, Di Bella G, Valenza A (2011) Glass–basalt/epoxy hybrid composites for marine applications. Mater Des 32(4):2091–2099

    Article  CAS  Google Scholar 

  6. Carmisciano S, Rosa IMD, Sarasini F, Tamburrano A, Valente M (2011) Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater Des 32:337–342

    Article  CAS  Google Scholar 

  7. Dorigato A, Pegoretti A (2014) Flexural and impact behaviour of carbon/basalt fibers hybrid laminates. J Compos Mater 48(9):1121–1130

    Article  Google Scholar 

  8. Liu Q, Shaw MT, Parnas RS, McDonnell A-M (2016) Investigation of basalt fiber composite mechanical properties for applications in transportation. Polym Compos 27(1):41–48

    Article  Google Scholar 

  9. Sarasini F, Tirillò J, Ferrante L, Valente M, Valente T, Lampani L, Gaudenzi P, Cioffi S, Iannace S, Sorrentino L (2014) Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos B Eng 59:204–220

    Article  CAS  Google Scholar 

  10. Ary Subagia IDG, Tijing LD, Kim Y, Kim CS, Vista IV FP, Shon HK (2014) Mechanical performance of multiscale basalt fiber–epoxy laminates containing tourmaline micro/nano particles. Compos B Eng 58:611–617

    Article  CAS  Google Scholar 

  11. Wang X, Wu, Zhishen, Wu, Gang, Zhu H, Zen F (2013) Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge. Compos B Eng 44(1):184–192

    Google Scholar 

  12. Ricciardi MR, Papa I, Coppola G, Lopresto V, Sansone L, Antonucci V (2021) Effect of Plasma Treatment on the Impact Behavior of Epoxy/Basalt Fiber-Reinforced Composites: A Preliminary Study. Polymers 13(8):1293

    Article  CAS  Google Scholar 

  13. Landucci G, Rossi F, Nicolella C, Zanelli S (2009) Design and testing of innovative materials for passive fire protection. Fire Saf J 44(8):1103–1109

    Article  CAS  Google Scholar 

  14. Czigány T (2006) Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol 66:3210–3220

    Article  Google Scholar 

  15. Jiřı́ Militký, Vladimı́r Kovačič, Jitka Rubnerová, (2002) Influence of thermal treatment on tensile failure of basalt fibers. Eng Fract Mech 69(9):1025–1033

    Article  Google Scholar 

  16. Öztürk B, Arslan F, Öztürk S (2007) Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials. Tribol Int 40:37–48

    Article  Google Scholar 

  17. Medvedyev O, Tsybulya Y (2005) Basalt use in hot gas filtration. Filtr Sep 42(1):34–37

    Article  CAS  Google Scholar 

  18. Chen W, Shen H, Auad ML, Huang C, Nutt S (2009) Basalt fibre–epoxy laminates with functionalized multi-walled carbon nanotubes. Compos A Appl Sci Manuf 40:1082–1089

    Article  Google Scholar 

  19. Kim MT, Rhee KY (2011) Flexural behaviour of carbon nanotube-modified epoxy/basalt composites. Carbon Letters 12(3):177–179

    Article  Google Scholar 

  20. Kim MT, Rhee KY, Kim HJ, Jung DH (2012) Effect of moisture absorption on the flexural properties of basalt/CNT/epoxy composites. Carbon Letters 13(3):187–189

    Article  Google Scholar 

  21. Singha K (2012) A short review on basalt fiber, International Journal of Textile. Science 1(4):19–28

    Google Scholar 

  22. Plappert D, Ganzenmüller GC, May M, Beisel S (2020) Mechanical Properties of a Unidirectional Basalt-Fiber/Epoxy Composite. Journal of Composites Science 4(3):101. https://doi.org/10.3390/jcs4030101

    Article  CAS  Google Scholar 

  23. Czigány T, Vad J, Pölöskei K (2015) Basalt fiber as a reinforcement of polymer composites. Periodica Polytechnica Mechanical Engineering 49(1):3–14

    Google Scholar 

  24. Balaji K. V, Kamyar Shirvanimoghaddam, Guru Sankar Rajan, Amanda V.Ellis, Minoo Naebe (2020), Surface treatment of Basalt fiber for use in automotive composites, Materials Today Chemistry, 17, 100334.

    Google Scholar 

  25. Botev M, Betchev H, Bikiaris D, Panayiotou C (1999) Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J, Applied Polymer Science 74(3):523–531

    Article  CAS  Google Scholar 

  26. Amuthakkannan P, Manikandan V, Uthayakumar M (2014) Mechanical Properties of Basalt and Glass Fiber Reinforced Polymer Hybrid Composites. J Adv Microsc Res 9(1):44–49

    Article  Google Scholar 

  27. Zhang Y, Yu, Chunxiao, Chu PK, Lv F, Zhang C, Ji J, Zhang R, Wang H (2012) Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites. Mater Chem Phys 133:845–849

    Google Scholar 

  28. Deák T, Czigány T, Tamás P (2010) Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents. Express Polym Lett 4:590–598

    Article  Google Scholar 

  29. Živković I, Fragassa C, Pavlović A, Brugo T (2016) Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos B Eng 111:148–164

    Article  Google Scholar 

  30. Zhao X, Wang X, Wu, Zhishen, Keller T, Vassilopoulos AP (2019) Temperature effect on fatigue behavior of basalt fiber-reinforced polymer composites. Polym Compos 40(6):2273–2283

    Google Scholar 

  31. Kessler E, Gadow R, Straub J (2016) Basalt, glass and carbon fibers and their fiber reinforced polymer composites under thermal and mechanical load. AIMS Materials Science 3(4):1561–1576

    Article  CAS  Google Scholar 

  32. Moiseev EA, Gutnikov SI, Malakho AP, Lazoryak BI (2008) Effect of iron oxides on the fabrication and properties of continuous glass fibers. Inorg Mater 44:1026–1030

    Article  CAS  Google Scholar 

  33. Lu, Zhongyu, Xian G, Rashid K (2017) Creep Behavior of Resin Matrix and Basalt Fiber Reinforced Polymer (BFRP) Plate at Elevated Temperatures. Journal of Composite Science 1(1):3. https://doi.org/10.3390/jcs1010003

  34. Hao LC, Yu WD (2010) Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. J Therm Anal Calorim 100:551–555

    Article  CAS  Google Scholar 

  35. Kim S-S, Ly HV, Kim J, Choi JH, Woo HC (2013) Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass. Biores Technol 139:242–248

    Article  CAS  Google Scholar 

  36. Jamshaid H, Mishra R, Militky J, Pechociakova M, Noman MT (2016) Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers and Polymers 17:1675–1686

    Article  CAS  Google Scholar 

  37. Chunhong Tang, FengXiang Xu, Guangyao Li (2019), Combustion Performance and Thermal Stability of Basalt Fiber-Reinforced Polypropylene Composites. Polymers (Basel),11(11), 1826

    Google Scholar 

  38. El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    Article  CAS  Google Scholar 

  39. Mohan K, Rajmohan T (2017) Fabrication and Characterization of MWCNT Filled Hybrid Natural Fiber Composites. Journal of Natural Fibers 14(6):864–874

    Article  CAS  Google Scholar 

  40. John K, Venkata Naidu S (2004) Sisal Fiber/Glass Fiber Hybrid Composites: The Impact and Compressive Properties. J Reinf Plast Compos 23(12):1253–1258

    Article  CAS  Google Scholar 

  41. Bernasconi A, Davoli P, Basile A, Filippi A (2007) Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int J Fatigue 29(2):199–208

    Article  CAS  Google Scholar 

  42. Bandaru AK, Patel S, Sachan Y, Suhail Ahmad R, Alagirusamy NB (2016) Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Compos A Appl Sci Manuf 90:642–652

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijayabhaskar, S., Rajmohan, T., Nirmal, U., Somnath Sarma, V.S. (2022). Preparation, Mechanical Properties and Thermal Analysis of Basalt Fiber Reinforced with Polypropylene (BFRPP) Composites. In: Palanikumar, K., Thiagarajan, R., Latha, B. (eds) Bio-Fiber Reinforced Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8899-7_15

Download citation

Publish with us

Policies and ethics