Skip to main content

A Review of Bayesian Posterior Distribution Based on MCMC Methods

  • Conference paper
  • First Online:
Computing and Data Science (CONF-CDS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1513))

Included in the following conference series:

Abstract

Bayesian inference plays an essential role in the development of mathematical theory, as an important component of statistical methods. The prior distribution, the likelihood function and the posterior distribution are used in Bayesian inference. A combination of the prior distribution and the likelihood function will represent the posterior distribution, where the background information decides the prior distribution, and the background information and the observed data together form the likelihood function. This paper presents the background of Bayesian inference, the main developments, and the challenges of computing the posterior distribution. It focuses on six MCMC-based methods, such as the Metropolis-Hastings algorithm, Gibbs sampler, Reversible Jump MCMC, Hamiltonian Monte Carlo, Adaptive Metropolis, and preconditioned Crank-Nicolson. The advantages, limitations and applications of each algorithm are also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Efron, B.: Why isn’t everyone a Bayesian? Am. Stat. 40(1), 1–5 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Lindley, D.: Introduction to Probability and Statistics from a Bayesian Viewpoint. Part 1 Probability and Part 2 Inference. Cambridge University Press, Cambridge (1965)

    MATH  Google Scholar 

  3. Bayes, T.: LII: an essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philos. Trans. Roy. Soc. London 53, 370–418 (1763)

    Google Scholar 

  4. Bernoulli, J.: ARS conjectandi, Opus posthumum. Culture et Civilisation, Belgium (1968)

    Google Scholar 

  5. Laplace, P.: Essai Philosophique sur les Probabilités. Mme Ve Courcier, Paris (1814)

    MATH  Google Scholar 

  6. Jeffreys, H.: Theory of Probability, 3rd edn. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  7. Kass, R.: Data-translated likelihood and Jeifreys’s rules. Biometrika 77(1), 107–114 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.: An introduction to MCMC for machine learning. Mach. Learn. 50(1/2), 5–43 (2003)

    Article  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 721–741 (1984)

    Article  Google Scholar 

  10. Brooks, S., Gelman, A., Jones, G., Meng, X.: Handbook of Markov Chain Monte Carlo. CRC Press, New York (2011)

    Book  Google Scholar 

  11. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)

    Book  Google Scholar 

  12. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2007). https://doi.org/10.1007/978-0-387-45528-0

    Book  MATH  Google Scholar 

  13. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: efficient adaptive MCMC. Stat. Comput. 16(4), 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  14. Dellaportas, P., Forster, J., Ntzoufras, I.: On Bayesian model and variable selection using MCMC. Stat. Comput. 12(1), 27–36 (2002)

    Article  MathSciNet  Google Scholar 

  15. Johannes, M., Polson, N.: MCMC methods for continuous-time financial econometrics. SSRN Electron. J. (2003)

    Google Scholar 

  16. Gelfand, A., Smith, A.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85(410), 398–409 (1990)

    Article  MathSciNet  Google Scholar 

  17. Green, P.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)

    Article  MathSciNet  Google Scholar 

  18. Hobert, J., Jones, G., Presnell, B., Rosenthal, J.: On the applicability of regenerative simulation in Markov chain Monte Carlo. Biometrika 89(4), 731–743 (2002)

    Article  MathSciNet  Google Scholar 

  19. Duane, S., Kennedy, A., Pendleton, B., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987)

    Article  MathSciNet  Google Scholar 

  20. Neal, R.: MCMC Using Hamiltonian Dynamics. arXiv: Computation, pp. 139–188 (2011)

    Google Scholar 

  21. Hoffman, M.D., Gelman, A.: The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7(2), 223–242 (2001)

    Article  MathSciNet  Google Scholar 

  23. Cotter, S., Roberts, G., Stuart, A., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Statist. Sci. 28(3), 424–446 (2013)

    Article  MathSciNet  Google Scholar 

  24. Stuart, A.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    Article  MathSciNet  Google Scholar 

  25. Hu, Z., Yao, Z., Li, J.: On an adaptive preconditioned Crank-Nicolson MCMC algorithm for infinite dimensional Bayesian inference. J. Comput. Phys. 332, 492–503 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhou, Q., Hu, Z., Yao, Z., Li, J.: A hybrid adaptive MCMC algorithm in function spaces. SIAM/ASA J. Uncert. Quant. 5(1), 621–639 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wallin, J., Vadlamani, S.: Infinite dimensional adaptive MCMC for Gaussian processes. arXiv: Computation (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z. (2021). A Review of Bayesian Posterior Distribution Based on MCMC Methods. In: Cao, W., Ozcan, A., Xie, H., Guan, B. (eds) Computing and Data Science. CONF-CDS 2021. Communications in Computer and Information Science, vol 1513. Springer, Singapore. https://doi.org/10.1007/978-981-16-8885-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8885-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8884-3

  • Online ISBN: 978-981-16-8885-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics