Skip to main content

Challenges and Threats Posed by Plant Pathogenic Fungi on Agricultural Productivity and Economy

  • Chapter
  • First Online:
Fungal diversity, ecology and control management

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungi represent the largest group of plant pathogens that causes up to 14% crop yield losses annually, rendering it to be one of the prime challenges in achieving global food security and agricultural sustainability. Fungal diseases significantly affect crop yield and productivity, thereby dwindling the global economy at large. The Irish famine, Coffee rust in Ceylon, Great Bengal famine, and Southern corn leaf blight in the USA are examples of fungal disease outbreaks that have been major economic downfall causing millions to die of starvation. To indemnify the devastations of plant pathogens, agricultural biotechnology has emerged as a potential tool to boost crop productivity and thereby the world economy. It has gained colossal acceptance with an expansive growth in recuperating agriculture efficiency with emphasis on technological innovations, development of disease-resistant varieties, employment of effective disease management strategies, and implementation of plant protection schemes. One of the primary challenges faced by agriculturists is to feed the booming population without jeopardizing the arenas of food security, sustainable use of natural resources, and ecosystem resilience. Intensification of agriculture perpetuates the existence of monocultures in fields that pose a serious threat to increased disease epidemics. Facilitation of a dynamic agro-ecosystem that includes integrated crop management systems is significant in improving pathogen resistance. Precise identification of a pathogen, appraisal of its impact in field and productivity, host interaction, epidemiological studies, and understanding the conducive conditions for its proliferation and dissemination are the other important challenges faced by agriculturists. Although better crop productivity has been achieved with the use of pesticides and fungicides, their recurrent use has exerted ecological and environmental pressures on agricultural ecosystems and human health. Similarly, understanding the role of climate change on the impact of fungal pathogens and the development of suitable management programs are the need of the hour that yet need to be largely employed worldwide. While the economic impact is not only restricted to the crop or yield loss, the abated quality of crop products also has a significant impact on the revenue. This demands for the creation of a global network of stakeholders that can enforce crop protection schemes and fortify the crop demand. This chapter aims to understand the intricate challenges and threats posed by fungal pathogens on agricultural productivity and the reliable solutions to strengthen and improve global agricultural production and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrios GN (1997) How pathogens attack plants. In: Plant pathology, 4th edn. Academic, San Diego, pp 66–72

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Academic, New York

    Google Scholar 

  • Bebber DP, Ramotowski MA, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Chang 3(11):985–988

    Article  Google Scholar 

  • Bebber DP, Castillo ÁD, Gurr SJ (2016) Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Philos Trans R Soc Lond Ser B Biol Sci 371(1709):20150458

    Article  Google Scholar 

  • Bebber DP, Field E, Gui H et al (2019) Many unreported crop pests and pathogens are probably already present. Glob Chang Biol 25(8):2703–2713

    Article  PubMed  Google Scholar 

  • Bergamin A, Carneiro SMTP, Godoy CV et al (1997) Angular leaf spot of Phaseolus beans: relationships between disease, healthy leaf area, and yield. Phytopathology 87:506–515

    Article  Google Scholar 

  • Bosch FVD, Oliver R, van den Berg F et al (2018) Governing principles can guide fungicide-resistance management tactics. Annu Rev Phytopathol 52:175–195

    Article  CAS  Google Scholar 

  • Bourke PM (1964) Emergence of potato blight. Nature 203:805–808

    Google Scholar 

  • Brasier CM, Kirk SA (2010) Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol 59(1):186–199

    Article  CAS  Google Scholar 

  • Casadevall A (2017) Don’t forget the fungi when considering global catastrophic biorisks. Health Secur 15:341–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Casadevall A, Pirofski LA (2009) Virulence factors and their mechanisms of action: the view from a damage–response framework. J Water Health 7(S1):S2–S18

    Article  PubMed  Google Scholar 

  • Croll D, McDonald BA (2017) The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol Ecol 26(7):2027–2040

    Article  CAS  PubMed  Google Scholar 

  • Cross AS (2008) What is a virulence factor? Crit Care 12(6):1–2

    Article  Google Scholar 

  • Crous PW, Groenewald JZ (2005) Hosts, species and genotypes: opinions versus data. Australas Plant Pathol 34(4):463–470

    Article  Google Scholar 

  • Crous PW, Groenewald JZ, Slippers B et al (2016) Global food and fibre security threatened by current inefficiencies in fungal identification. Philos Trans R Soc Lond Ser B Biol Sci 371(1709):20160024

    Article  Google Scholar 

  • Cunniffe NJ, Koskella B, Metcalf CJE et al (2015) Thirteen challenges in modelling plant diseases. Epidemics 10:6–10

    Article  PubMed  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Desprez-Loustau ML, Robin C, Buee M et al (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480

    Article  PubMed  Google Scholar 

  • Drenth A, Guest DI (2016) Fungal and oomycete diseases of tropical tree fruit crops. Annu Rev Phytopathol 54:373–395

    Article  CAS  PubMed  Google Scholar 

  • Elderfield JA, Lopez-Ruiz FJ, van den Bosch F et al (2018) Using epidemiological principles to explain fungicide resistance management tactics: why do mixtures outperform alternations? Phytopathology 108:803–817

    Article  CAS  PubMed  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the Green Revolution, 1960 to 2000. Science 300(5620):758–762

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194

    Article  CAS  PubMed  Google Scholar 

  • Fones HN, Bebber DP, Chaloner TM et al (2020) Threats to global food security from emerging fungal and oomycete crop pathogens. Nat Food 1(6):332–342

    Article  Google Scholar 

  • Garcia-Solache MA, Casadevall A (2010) Global warming will bring new fungal diseases for mammals. MBio 1:e00061

    Article  PubMed  PubMed Central  Google Scholar 

  • Hantula J, Müller MM, Uusivuori J (2014) International plant trade associated risks: Laissez-faire or novel solutions. Environ Sci Pol 37:158–160

    Article  Google Scholar 

  • Herron SR, Benen JAE, Scavetta RD et al (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci U S A 97:8762–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Allen C (1997) An exopoly-alpha-D-galacturonosidase, PehB, is required for wild-type virulence of Ralstonia solanacearum. J Bacteriol 179:7369–7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Anzai H, Yamaguchi I (2001) Microbial toxins in plant-pathogen interactions: biosynthesis, resistance mechanisms, and significance. J Gen Appl Microbiol 47:149–160

    Article  CAS  PubMed  Google Scholar 

  • Madden LV, Nutter FW (1995) Modeling crop losses at the field scale. Can J Plant Pathol 17:124–135

    Article  Google Scholar 

  • Manning WJ, Tiedemann AV (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88(2):219–245

    Article  CAS  PubMed  Google Scholar 

  • McDonald BA, Stukenbrock EH (2016) Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos Trans R Soc Lond Ser B Biol Sci 371(1709):20160026

    Article  Google Scholar 

  • Möbius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Curr Opin Plant Biol 12(4):390–398

    Article  PubMed  CAS  Google Scholar 

  • Möller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 15:756–771

    Article  PubMed  CAS  Google Scholar 

  • Mottaleb KA, Singh PK, Sonder K et al (2018) Threat of wheat blast to South Asia’s food security: an ex-ante analysis. PLoS One 13(5):e0197555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver RP, Hewitt HG (2014) Fungicides in crop protection. CABI, Wallingford

    Book  Google Scholar 

  • Padmanabhan SY (1973) The great Bengal famine. Annu Rev Phytopathol 11:11–24

    Article  Google Scholar 

  • Palmer CL, Skinner W (2002) Mycosphaerella graminicola: latent infection, crop devastation and genomics. Mol Plant Pathol 3(2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Edenbrandt AK, Vedel SE et al (2015) Are we ready for back-to-nature crop breeding? Trends Plant Sci 20:155–164

    Article  CAS  PubMed  Google Scholar 

  • Pandey D, Rajendran SRCK, Gaur M et al (2016) Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul 35(4):1159–1174

    Article  CAS  Google Scholar 

  • Perez G, Slippers B, Wingfield MJ et al (2012) Cryptic species, native populations and biological invasions by a eucalypt forest pathogen. Mol Ecol 21(18):4452–4471

    Article  PubMed  Google Scholar 

  • Pontes JGDM, Fernandes LS, dos Santos RV et al (2020) Virulence factors in the phytopathogen–host interactions: an overview. J Agric Food Chem 68(29):7555–7570

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10(6):417–430

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC et al (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reino JL, Hernandez-Galan R, Durán-Patrón R et al (2004) Virulence–toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J Phytopathol 152(10):563–566

    Article  CAS  Google Scholar 

  • Rouanet C, Reverchon S, Rodionov DA et al (2004) Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon. J Biol Chem 279:30158–30167

    Article  CAS  PubMed  Google Scholar 

  • Sakalidis ML, Slippers B, Wingfield BD et al (2013) The challenge of understanding the origin, pathways and extent of fungal invasions: global populations of the Neofusicoccum parvum–N. ribis species complex. Divers Distrib 19(8):873–883

    Article  Google Scholar 

  • Savary S, Ficke A, Aubertot JN et al (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537

    Article  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholthof KBG (2007) The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5(2):152–156

    Article  CAS  PubMed  Google Scholar 

  • Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21(2-3):90–106

    Article  Google Scholar 

  • Strange RN (2003) Introduction to plant pathology. Wiley, Chichester

    Google Scholar 

  • Strange RN (2007) Phytotoxins produced by microbial plant pathogens. Nat Prod Rep 24(1):127–144

    Article  CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro ecosystems. Annu Rev Phytopathol 46:75–100

    Article  CAS  PubMed  Google Scholar 

  • Suffert F, Thompson RN (2018) Some reasons why the latent period should not always be considered constant over the course of a plant disease epidemic. Plant Pathol 67:1831–1840

    Article  Google Scholar 

  • Wingfield MJ, De Beer ZW, Slippers B et al (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 13(6):604–613

    Article  CAS  PubMed  Google Scholar 

  • Wingfield MJ, Brockerhoff EG, Wingfield BD et al (2015) Planted forest health: the need for a global strategy. Science 349(6250):832–836

    Article  CAS  PubMed  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  CAS  PubMed  Google Scholar 

  • Yakoby N, Beno-Moualem D, Keen NT et al (2001) Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit–fungus interaction. Mol Plant-Microbe Interact 14:988–995

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anand, G., Rajeshkumar, K.C. (2022). Challenges and Threats Posed by Plant Pathogenic Fungi on Agricultural Productivity and Economy. In: Rajpal, V.R., Singh, I., Navi, S.S. (eds) Fungal diversity, ecology and control management. Fungal Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8877-5_23

Download citation

Publish with us

Policies and ethics