Skip to main content

Review on a Full-Duplex Cognitive Radio Network Based on Energy Harvesting

  • Conference paper
  • First Online:
Proceedings of Trends in Electronics and Health Informatics

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 376))

Abstract

Full-duplex (FD) interaction gets anticipated to double spectrum efficiency (SE) with either the growth of self-interference repression methods. The secondary users (sus) may concurrently carry out range signaling and data transfer in cognitive radio (CR) which is FD-based, to attain better detecting quality and higher SU utilization. Recently, another primary performance metric in wireless devices of fifth-generation (5G), excellent efficiency toward energy (EE), may have fascinated increasing attention. An RF energy harvesting (EH) method is planned to extend the battery life of small-power communications appliances. All over the paper, the energy planting complete duplex CR is being talked about.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng W, Zhang H, Liang L, Jing H, Li Z (2018) Orbital-angular-momentum embedded massive MIMO: achieving multiplicative spectrum-effciency for mmWave communication. IEEE Access 6:2732–2745

    Article  Google Scholar 

  2. Towhidlou V, Shikh-Bahaei M (2018) Adaptive full-duplex communications in cognitive radio networks. IEEE Trans Veh Technol 67(9):8386–8395

    Article  Google Scholar 

  3. Amjad M, Akhtar F, Rehmani MH, Reisslein M, Umer T (2017) Full-duplex communication in cognitive radio networks: a survey. IEEE Commun Surv Tutorials 19(4):2158–2191

    Article  Google Scholar 

  4. Cheng W, Zhang X, Zhang H (2015) Full-duplex spectrum-sensing and MAC-protocol for multichannel nontime-slotted cognitive radio networks. IEEE J Sel Areas Commun 33(5):820–831

    Article  Google Scholar 

  5. Sharma SK, Bogale TE, Le LB, Chatzinotas S, Wang X, Ottersten B (2018) Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: recent advances and research challenges. IEEE Commun Surv Tutorials 20(1):674–707

    Google Scholar 

  6. Bayat A, Aissa S (2018) Full-duplex cognitive radio with asynchronous energy-effcient sensing. IEEE Trans Wirel Commun 17(2):1066–1080

    Article  Google Scholar 

  7. Liao Y, Wang T, Song L, Jiao B (2014) Cooperative spectrum sensing for full-duplex cognitive radio networks. In: Proceeding of IEEE international conference on communication systems, pp 56–60

    Google Scholar 

  8. Shi Z, Teh KC, Li KH (2013) Energy-effcient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Commun Lett 17(3):565–568

    Article  Google Scholar 

  9. Pratibha M, Li KH, Teh KC (2016) Channel selection in multichannel cognitive radio systems employing RF energy harvesting. IEEE Trans Veh Technol 65(1):457–462

    Article  Google Scholar 

  10. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutorial 18:1617–1655

    Article  Google Scholar 

  11. Ghanbari A, Laya A, Alonso-Zarate J, Markendahl J (2017) Business development in the Internet of Things: a matter of vertical cooperation. IEEE Commun Mag 55:135–141

    Article  Google Scholar 

  12. Höyhtyä M et al (2017) Database-assisted spectrum sharing in satellite communications: a survey. IEEE Access 5:25322–25341

    Article  Google Scholar 

  13. Zhou Z, Guo D, Honig ML (2017) Licensed and unlicensed spectrum allocation in heterogeneous networks. IEEE Trans Commun 1815–1827

    Google Scholar 

  14. Hortelano D, Olivares T, Ruiz MC, Garrido C, López V (2017) From sensor networks to Internet of Things. Bluetooth low energy, a standard for this evolution. Sensors 17:372

    Google Scholar 

  15. Strategy Analytics News & Press Releases. Accessed 14 Oct 2014. [Online]. Available http://www.prnewswire.com/news/strategyanalytics

  16. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the Internet of Things: a survey. IEEE Commun Surveys Tutorials 16:414–454

    Article  Google Scholar 

  17. Whitmore A, Agarwal A, Xu LD (2015) ‘The Internet of Things a survey of topics and trends. Inf Syst Front 17:261–274

    Article  Google Scholar 

  18. Afzal A et al (2015) The cognitive Internet of Things: a unified perspective. Mobile Netw Appl 72–85

    Google Scholar 

  19. Ning H et al (2015) From Internet to smart world. IEEE Access 3:1994–1999

    Article  Google Scholar 

  20. Ray BR, Abawajy J, Chowdhury M (2014) Scalable RFID security framework and protocol supporting Internet of Things. Comput Netw 67:89–103

    Article  Google Scholar 

  21. Chilipirea C, Ursache A, Popa DO, Pop F (2016) Energy efficiency and robustness for IOT: building a smart home security system. In: Proceedings of IEEE 12th international conference on intelligent computer communication and processing (ICCP), pp 43–48

    Google Scholar 

  22. Hoan V-v, Koo I (2018) Joint full-duplex/half-duplex transmission-switching scheduling and transmission-energy allocation in cognitive radio networks with energy harvesting. Sensors 18(7)

    Google Scholar 

  23. Zhang L, Xiao M, Wu G, Alam M, Liang YC, Li S (2017) A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wireless Commun 44–51

    Google Scholar 

  24. Kim K, Akbar IA, Bae KK, Um JS, Spooner CM, Reed JH (2017) Cyclostationary approaches to signal detection and classification in cognitive radio. In: Proceedings of 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), pp 212–215

    Google Scholar 

  25. Doost-Mohammady R, Chowdhury KR (2012) Design of spectrum database assisted cognitive radio vehicular networks. In: Proceedings of 7th international ICST conference on cognitive radio-oriented wireless network communication (CROWNCOM), pp 1–5

    Google Scholar 

  26. Gregori M, Gomez-Vilardebó J (2016) Online learning algorithms for wireless energy harvesting nodes. In: Proceedings of IEEE international conference on communications (ICC), Kuala Lumpur, Malaysia, pp 1–6

    Google Scholar 

  27. Gurakan B, Ozel O, Yang J, Ulukus S (2013) Energy cooperation in energy harvesting communications. IEEE Trans Commun 61:4884–4898

    Article  Google Scholar 

  28. Huang X, Han T, Ansari N (2015) On green-energy-powered cognitive radio networks. IEEE Commun Surv Tutorials 17

    Google Scholar 

  29. Zhang R, Chen H, Yeoh P, Li Y, Vucetic B (2017) Full-duplex cooperative cognitive radio networks with wireless energy harvesting. pp 1–6

    Google Scholar 

  30. Lei H, Xu M, Ansari, IS, Pan G, Qaraqe KA et al (2016) On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Trans Green Commun Netw 1–1

    Google Scholar 

  31. Bhowmick A, Chatterjee A, Verma R (2019) Performance analysis of physical layer security over generalized-K fading channels using a mixture Gamma distribution. IEEE Commun Lett 20:408–411

    Google Scholar 

  32. Alhatmi TA, Aldhabhani AM (2019) Full Duplex spectrum sensing and energy harvesting in cognitive radio networks, Access Netw (DySPAN) 212–215

    Google Scholar 

  33. Zhang Z, Long K, Vasilakos AV, Hanzo L (2016) Full-duplex wireless communications: challenges, solutions, and future research directions. Proc IEEE 104:1369–1409

    Article  Google Scholar 

  34. Naeem M, Illanko K, Karmokar A, Anpalagan A, Jaseemuddin M (2013) Energy-efficient cognitive radio sensor networks: parametric and convex transformations. Sensors 13:11032–11050

    Article  Google Scholar 

  35. Wang H, Ding G, Gao F, Chen J, Wang J, Wang L (2018) Power control in UAV-supported ultra dense networks: communications, caching, and energy transfer. IEEE Commun Mag 56:28–34

    Article  Google Scholar 

  36. Nguyen VD, Shin OS (2018) Cooperative prediction-and-sensing-based spectrum sharing in cognitive radio networks. IEEE Trans Cogn Commun Netw 4:108–120

    Article  Google Scholar 

  37. Fu Y, Yang F, He ZA (2018) Quantization-based multibit data fusion scheme for cooperative spectrum sensing in cognitive radio networks. Sensors 18:473

    Article  Google Scholar 

  38. Nasser A, Mansour A, Yao KC (2020) Simultaneous transmitting–receiving–sensing for OFDM-based full-duplex cognitive radio. Phys Commun 39:100987

    Google Scholar 

  39. Chatterjee S, Maity SP, Acharya T (2019) Energy-spectrum efficiency trade-off in energy harvesting cooperative cognitive radio networks. IEEE Trans Cogn Commun Netw 5(2):295–303

    Google Scholar 

  40. Maji P et al (2020) Secrecy and throughput performance of an energy harvesting hybrid cognitive radio network with spectrum sensing. Wirel Netw 26(2):1301–1314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, V., Singh, P. (2022). Review on a Full-Duplex Cognitive Radio Network Based on Energy Harvesting. In: Kaiser, M.S., Bandyopadhyay, A., Ray, K., Singh, R., Nagar, V. (eds) Proceedings of Trends in Electronics and Health Informatics. Lecture Notes in Networks and Systems, vol 376. Springer, Singapore. https://doi.org/10.1007/978-981-16-8826-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8826-3_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8825-6

  • Online ISBN: 978-981-16-8826-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics