Skip to main content

Unloading of Low Velocity Impact Between Elastic and Elastic-Plastic Bodies

  • Conference paper
  • First Online:
Proceedings of the 9th International Conference on Fracture, Fatigue and Wear (FFW 2021 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 334 Accesses

Abstract

The unloading process of an elastic sphere impacting an elastic-perfectly plastic half-space under low velocity and frictionless conditions is deeply studied in the light of finite element (FE) analysis. The unloading in the FE simulations ranges from elastic-plastic to fully plastic deformation regimes by designed impact velocities and material properties. The cavity profiles after unloading are measured from the FE simulations based on the spherical residual cavity validation. An analytical expression of the radius of spherical residual cavity is derived from the fitting method. The residual radius of curvature is determined by combining its physical definition with the analytical expression. A new revised Hertz unloading model is suggested, which is validated numerically and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arakere NK (2009) A review of rolling contact fatigue. J Tribol 131(4):041403

    Google Scholar 

  2. Li Y et al (2020) Dynamic response of spiral groove liquid film seal to impact conditions. Tribol Int 141

    Google Scholar 

  3. Li Y et al (2019) Dynamic response of spiral groove liquid film seal to impact conditions. 141:105865

    Google Scholar 

  4. Brake MR (2014) The role of epistemic uncertainty of contact models in the design and optimization of mechanical systems with aleatoric uncertainty. Nonlinear Dyn 77(3):899–922

    Article  Google Scholar 

  5. Arab AZE-A et al (2020) Finite-element analysis of a lateral femoro-tibial impact on the total knee arthroplasty. Comput Meth Progr Biomed 192(105446)

    Google Scholar 

  6. Ding Y et al (2018) Spherical indentation on biological films with surface energy. J Phys D 51(29):295401

    Google Scholar 

  7. Lin T et al (2007) A finite element method for 3D static and dynamic contact/impact analysis of gear drives. Comput Meth Appl Mech Eng 196(9–12):1716–1728

    Article  MATH  Google Scholar 

  8. Wang Y et al (2018) Optimal design of gear teeth modification with the minimum value of meshing-in impact. J Comput Theor Nanosci 15(1):230–236

    Article  Google Scholar 

  9. Deng X et al (2020) A combined experimental and computational study of lubrication mechanism of high precision reducer adopting a worm gear drive with complicated space surface contact. 146(5–6):106261

    Google Scholar 

  10. Wei L et al (2020) Investigation on the influence of spalling defects on the dynamic performance of planetary gear sets with sliding friction. 154

    Google Scholar 

  11. Yao T-Q et al (2016) Dynamics analysis on ball bearing-mechanism with clearance and impact of cage. J Aerosp Power 7:23

    Google Scholar 

  12. Branch NA et al (2013) Critical stresses and strains at the spall edge of a case hardened bearing due to ball impact. Int J Fatigue 47:268–278

    Article  Google Scholar 

  13. Yu Q et al (2004) The examination of the drop impact test method, intersociety conference on thermal and thermomechanical phenomena in electronic systems. 336–342

    Google Scholar 

  14. Lee C, Wang C (2019) Drop impact analysis of AMOLED display with buffer designs by using dynamic finite element simulation. In: International workshop on active matrix flatpanel displays and devices

    Google Scholar 

  15. Johnson (1987) Contact mechanics

    Google Scholar 

  16. Goldsmith W, Frasier JT (1961) Impact: the theory and physical behavior of colliding solids. J Appl Mech 28(4):639

    Article  Google Scholar 

  17. Dong X et al (2018) Local contact behavior between elastic and elastic–plastic bodies. Int J Solids Struct 150:22–39

    Article  Google Scholar 

  18. Thornton, (1997) Coefficient of restitution for collinear collisions of elastic perfectly plastic spheres. J Appl Mech 64:383–386

    Article  MATH  Google Scholar 

  19. Brake MRW (2015) An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts. Int J Solids Struct 62:104–123

    Article  Google Scholar 

  20. Brake MR (2012) An analytical elastic-perfectly plastic contact model. Int J Solids Struct 49(22):3129–3141

    Article  Google Scholar 

  21. Stronge WJ (2000) Impact mechanics. Cambridge University Press

    Book  MATH  Google Scholar 

  22. Vu-Quoc L et al (2000) A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation. J Appl Mech 67(2):363–371

    Article  MATH  Google Scholar 

  23. Majeed MA et al (2012) Elastoplastic contact/impact of rigidly supported composites. Compos B 43(3):1244–1251

    Article  Google Scholar 

  24. Jackson R et al (2005) A finite element study of the residual stress and deformation in hemispherical contacts. J Tribol 127(3):484–493

    Article  Google Scholar 

  25. Ma D, Liu C (2015) Contact law and coefficient of restitution in elastoplastic spheres. J Appl Mech 82(12)

    Google Scholar 

  26. Kogut L, Etsion I (2002) Elastic-plastic contact analysis of a sphere and a rigid flat. J Appl Mech 69(5):657–662

    Google Scholar 

  27. Big-Alabo A et al (2015) Contact model for elastoplastic analysis of half-space indentation by a spherical impactor. Comput Struct 151:20–29

    Article  Google Scholar 

  28. Bartier O et al (2010) Theoretical and experimental analysis of contact radius for spherical indentation. Mech Mater 42(6):640–656

    Article  Google Scholar 

  29. Carter CB et al (2015) Superhard silicon nanospheres. J Mech Phys Solids 51(6):979–992

    Google Scholar 

  30. Majumder S et al (2001) Study of contacts in an electrostatically actuated microswitch. In: Proceedings of the forty-fourth IEEE holm conference on electrical contacts, 1998, 2001, pp 127–132

    Google Scholar 

  31. Kadin Y et al (2006) Unloading an elastic–plastic contact of rough surfaces. J Mech Phys Solids 54(12):2652–2674

    Article  MATH  Google Scholar 

  32. Hertz H (1882) Ueber die Berührung fester elastischer Körper. : Journal für die reine und angewandte Mathematik (Crelle's Journal). Journal Für Die Reine Und Angewandte Mathematik

    Google Scholar 

  33. Apetre NA et al (2006) Low-velocity impact response of sandwich beams with functionally graded core. Int J Solids Struct 43(9):2479–2496

    Article  MATH  Google Scholar 

  34. Managuli V et al (2011) Low velocity impact analysis of composite laminates using linearized contact law. In: International conference on advances in mechanical engineering

    Google Scholar 

  35. Yigit A (2013) Low-velocity impact response of structures with local plastic deformation: characterization and scaling. J Comput Nonlinear Dyn 8(1):149–156

    Google Scholar 

  36. Li LY et al (2002) A theoretical model for the contact of elastoplastic bodies. Proc Inst Mech Eng Part C 216(4):421–431

    Google Scholar 

  37. Zhang L et al (2018) Transient impact response analysis of an elastic–plastic beam. Appl Math Model 55:616–636

    Article  MathSciNet  MATH  Google Scholar 

  38. Jin T et al (2019) Numerical–analytical model for transient dynamics of elastic-plastic plate under eccentric low-velocity impact. Appl Math Model 70:490–511

    Article  MathSciNet  MATH  Google Scholar 

  39. Kogut L, Komvopoulos K (2004) Analysis of the spherical indentation cycle for elastic–perfectly plastic solids. J Mater Res 19(12):3641–3653

    Article  Google Scholar 

  40. Jackson RL, Green I (2005) A finite element study of elasto-plastic hemispherical contact against a rigid flat. J Tribol 127(2):343–354

    Article  Google Scholar 

  41. Tabor D (1948) A simple theory of static and dynamic hardness. Proc R Soc A 192(1029):247–274

    Google Scholar 

  42. Kral E et al (1993) Elastic-plastic finite element analysis of repeated indentation of a half-space by a rigid sphere. J Appl Mech 60(4):829–841

    Article  Google Scholar 

  43. Ye N, Komvopoulos K (2003) Effect of residual stress in surface layer on contact deformation of elastic-plastic layered media. J Tribol 125(4):692–699

    Article  Google Scholar 

  44. Kral E et al (1995) Finite element analysis of repeated indentation of an elastic-plastic layered medium by a rigid sphere, Part II: Subsurface results. J Appl Mech 62(1):29–42

    Article  Google Scholar 

  45. Kral ER et al (1995) Finite element analysis of repeated indentation of an elastic-plastic layered medium by a rigid sphere, part I: surface results. J Appl Mech 62(1):20–28

    Article  Google Scholar 

  46. Etsion I et al (2005) Unloading of an elastic–plastic loaded spherical contact. Int J Solids Struct 42(13):3716–3729

    Article  MATH  Google Scholar 

  47. Ovcharenko A et al (2007) In situ investigation of the contact area in elastic–plastic spherical contact during loading–unloading. Tribol Lett 25(2):153–160

    Article  Google Scholar 

  48. Li LY, Gu JZ (2009) An analytical solution for the unloading in spherical indentation of elastic–plastic solids. Int J Eng Sci 47(3):452–462

    Article  MathSciNet  MATH  Google Scholar 

  49. Yan S, Li L (2003) Finite element analysis of cyclic indentation of an elastic-perfectly plastic half-space by a rigid sphere. Proc Inst Mech Eng C J Mech Eng Sci 217(5):505–514

    Article  Google Scholar 

  50. Majeed MA et al (2011) Modeling and analysis of elastoplastic impacts on supported composites, key engineering materials. Trans Tech Publications, pp 367–372

    Google Scholar 

  51. Christoforou AP et al (2013) Characterization and scaling of low velocity impact response of structures with local plastic deformation: implications for design. In: ASME 2012 International design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers Digital Collection, pp 125–135

    Google Scholar 

  52. Ibrahim AH, Yigit AS (2013) Finite element modeling and analysis of low velocity impact on composite structures subject to progressive damage and delamination. In: ASME 2012 International mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection, pp 719–730

    Google Scholar 

  53. Chen C et al (2020) Unloading behavior of low velocity impact between elastic and elastic-plastic bodies. Tribol Int 151C

    Google Scholar 

  54. Jackson RL et al (2010) Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn 60(3):217–229

    Article  MATH  Google Scholar 

  55. Ghaednia H et al (2015) Predicting the permanent deformation after the impact of a rod with a flat surface. J Tribol 137(1):011403

    Google Scholar 

  56. Thornton C, Ning Z (1194) Oblique impact of elasto-plastic spheres. In: Proceedings of the first international particle technology forum. AIChE Publications, pp 14–19

    Google Scholar 

  57. Vu-Quoc L, Zhang X (1999) An elastoplastic contact force-displacement model in the normal direction: displacement-driven version. Proc Math Phys Eng Sci 455(1991):4013–4044

    Article  MATH  Google Scholar 

  58. Wang H et al (2020) The correlation of theoretical contact models for normal elastic-plastic impacts. Int J Solids Struct 182–183:15–33

    Article  Google Scholar 

  59. Du Y, Wang S (2009) Energy dissipation in normal elastoplastic impact between two spheres. J Appl Mech 76(6):061010

    Google Scholar 

  60. Jackson RL, I.G., D.B. Marghitu, (2010) Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn 60(3):217–229

    Article  MATH  Google Scholar 

  61. Stevens A, Hrenya C (2005) Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technol 154(2–3):99–109

    Article  Google Scholar 

  62. Martin CL, Bouvard D (2004) Isostatic compaction of bimodal powder mixtures and composites. Int J Mech Sci 46(6):907–927

    Article  MATH  Google Scholar 

  63. Larsson PL, Olsson E (2015) A numerical study of the mechanical behavior at contact between particles of dissimilar elastic–ideally plastic materials. J Phys Chem Solids 77:92–100

    Article  Google Scholar 

  64. Wang E et al (2013) An experimental study of the dynamic elasto-plastic contact behavior of dimer metallic granules. Exp Mech 53(5):883–892

    Article  Google Scholar 

  65. Wang E et al (2013) An experimental study of the dynamic elasto-plastic contact behavior of metallic granules. J Appl Mech 80(2):021009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C., Abdel Wahab, M., Wang, Q., Yin, X. (2022). Unloading of Low Velocity Impact Between Elastic and Elastic-Plastic Bodies. In: Abdel Wahab, M. (eds) Proceedings of the 9th International Conference on Fracture, Fatigue and Wear . FFW 2021 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-8810-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8810-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8809-6

  • Online ISBN: 978-981-16-8810-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics